Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311540083> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4311540083 abstract "Abstract Background Community-onset Staphylococcus aureus (CO-S. aureus) pediatric infections, methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) continue to contribute to the burden of infections seen in the ambulatory setting in the US. Individual risk factors have been identified, but place-based factors and specific geographic locality have not been well-studied. The purpose of this study is to predict place-based factors that contribute to the spread of CO-S. aureus in a major urban area using maximum entropy (MaxEnt), a machine learning technique. Methods Electronic medical records from two pediatric hospitals (2002 to 2016) were retrospectively reviewed. Inclusion criteria: a confirmed S. aureus infection within 48 hours of hospital admission (CO-S. aureus), < 19 years old, and a geo-referenced address within Atlanta’s metropolitan statistical area (MSA). Fourteen place-based factors, at the US Census block group level, were included in the MaxEnt models: < 18 years old, Caucasian, African American, ethnicity, poverty, education attainment, crowding, daycare, kindergarten enrollment, distance to K-12 school, distance to a children’s hospital, distance to a daycare center, and population density. A total of four models (CO-MRSA early, CO-MSSA early, CO-MRSA later, and CO-MSSA later) were run using the MaxEnt software. For each model, 75% and 25% of data was randomly assigned to training and testing groups, respectively. Models were assessed by jack-knife tests. Results 16,124 records met eligibility criteria for MaxEnt models. The training Area Under the Curve (AUC) ranged from 0.771 to 0.837 and the test AUC ranged from 0.769 to 0.804. Population density had the highest contribution in predicting CO-MRSA and CO-MSSA locations, which was confirmed by jack-knife tests. Conclusion By applying MaxEnt to pediatric CO-S. aureus infections in the Atlanta MSA, it was found that higher risks of CO-S. aureus infections may exist in more densely populated areas. MaxEnt can be utilized to identify potential future areas of CO-MRSA and CO-MSSA infections based on estimated or predicted changes to the place-based factors used to build these models. Disclosures Lilly Immergluck, MD, MS, GSK: Clinical Trial- PI|Merck: Vaccine Trial Site- serve as PI|Moderna: Board Member|Novavax: Part of CoVID-19 Phase 3 Trial through US Covid Prevention Network." @default.
- W4311540083 created "2022-12-27" @default.
- W4311540083 creator A5004722615 @default.
- W4311540083 creator A5012525355 @default.
- W4311540083 creator A5018311470 @default.
- W4311540083 creator A5019884909 @default.
- W4311540083 creator A5030336728 @default.
- W4311540083 creator A5080852904 @default.
- W4311540083 creator A5085657752 @default.
- W4311540083 date "2022-12-01" @default.
- W4311540083 modified "2023-10-14" @default.
- W4311540083 title "568. Using Machine Learning to Predict Place-Based Risks for <i>Staphylococcus aureus</i> Infections in Children" @default.
- W4311540083 doi "https://doi.org/10.1093/ofid/ofac492.621" @default.
- W4311540083 hasPublicationYear "2022" @default.
- W4311540083 type Work @default.
- W4311540083 citedByCount "0" @default.
- W4311540083 crossrefType "journal-article" @default.
- W4311540083 hasAuthorship W4311540083A5004722615 @default.
- W4311540083 hasAuthorship W4311540083A5012525355 @default.
- W4311540083 hasAuthorship W4311540083A5018311470 @default.
- W4311540083 hasAuthorship W4311540083A5019884909 @default.
- W4311540083 hasAuthorship W4311540083A5030336728 @default.
- W4311540083 hasAuthorship W4311540083A5080852904 @default.
- W4311540083 hasAuthorship W4311540083A5085657752 @default.
- W4311540083 hasBestOaLocation W43115400831 @default.
- W4311540083 hasConcept C137403100 @default.
- W4311540083 hasConcept C144024400 @default.
- W4311540083 hasConcept C149923435 @default.
- W4311540083 hasConcept C187212893 @default.
- W4311540083 hasConcept C19165224 @default.
- W4311540083 hasConcept C2777052132 @default.
- W4311540083 hasConcept C2779489039 @default.
- W4311540083 hasConcept C523546767 @default.
- W4311540083 hasConcept C54355233 @default.
- W4311540083 hasConcept C71924100 @default.
- W4311540083 hasConcept C86803240 @default.
- W4311540083 hasConceptScore W4311540083C137403100 @default.
- W4311540083 hasConceptScore W4311540083C144024400 @default.
- W4311540083 hasConceptScore W4311540083C149923435 @default.
- W4311540083 hasConceptScore W4311540083C187212893 @default.
- W4311540083 hasConceptScore W4311540083C19165224 @default.
- W4311540083 hasConceptScore W4311540083C2777052132 @default.
- W4311540083 hasConceptScore W4311540083C2779489039 @default.
- W4311540083 hasConceptScore W4311540083C523546767 @default.
- W4311540083 hasConceptScore W4311540083C54355233 @default.
- W4311540083 hasConceptScore W4311540083C71924100 @default.
- W4311540083 hasConceptScore W4311540083C86803240 @default.
- W4311540083 hasIssue "Supplement_2" @default.
- W4311540083 hasLocation W43115400831 @default.
- W4311540083 hasLocation W43115400832 @default.
- W4311540083 hasOpenAccess W4311540083 @default.
- W4311540083 hasPrimaryLocation W43115400831 @default.
- W4311540083 hasRelatedWork W1995533152 @default.
- W4311540083 hasRelatedWork W2117391666 @default.
- W4311540083 hasRelatedWork W2119733451 @default.
- W4311540083 hasRelatedWork W2120531398 @default.
- W4311540083 hasRelatedWork W2134460529 @default.
- W4311540083 hasRelatedWork W2249370399 @default.
- W4311540083 hasRelatedWork W2329207811 @default.
- W4311540083 hasRelatedWork W2438254958 @default.
- W4311540083 hasRelatedWork W2532901088 @default.
- W4311540083 hasRelatedWork W2981227515 @default.
- W4311540083 hasVolume "9" @default.
- W4311540083 isParatext "false" @default.
- W4311540083 isRetracted "false" @default.
- W4311540083 workType "article" @default.