Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311543323> ?p ?o ?g. }
- W4311543323 endingPage "102722" @default.
- W4311543323 startingPage "102722" @default.
- W4311543323 abstract "Coronavirus disease (COVID-19) has caused a worldwide pandemic, putting millions of people's health and lives in jeopardy. Detecting infected patients early on chest computed tomography (CT) is critical in combating COVID-19. Harnessing uncertainty-aware consensus-assisted multiple instance learning (UC-MIL), we propose to diagnose COVID-19 using a new bilateral adaptive graph-based (BA-GCN) model that can use both 2D and 3D discriminative information in 3D CT volumes with arbitrary number of slices. Given the importance of lung segmentation for this task, we have created the largest manual annotation dataset so far with 7,768 slices from COVID-19 patients, and have used it to train a 2D segmentation model to segment the lungs from individual slices and mask the lungs as the regions of interest for the subsequent analyses. We then used the UC-MIL model to estimate the uncertainty of each prediction and the consensus between multiple predictions on each CT slice to automatically select a fixed number of CT slices with reliable predictions for the subsequent model reasoning. Finally, we adaptively constructed a BA-GCN with vertices from different granularity levels (2D and 3D) to aggregate multi-level features for the final diagnosis with the benefits of the graph convolution network's superiority to tackle cross-granularity relationships. Experimental results on three largest COVID-19 CT datasets demonstrated that our model can produce reliable and accurate COVID-19 predictions using CT volumes with any number of slices, which outperforms existing approaches in terms of learning and generalisation ability. To promote reproducible research, we have made the datasets, including the manual annotations and cleaned CT dataset, as well as the implementation code, available at https://doi.org/10.5281/zenodo.6361963." @default.
- W4311543323 created "2022-12-27" @default.
- W4311543323 creator A5001561421 @default.
- W4311543323 creator A5012655807 @default.
- W4311543323 creator A5021461105 @default.
- W4311543323 creator A5025463779 @default.
- W4311543323 creator A5032839484 @default.
- W4311543323 creator A5033072798 @default.
- W4311543323 creator A5037073008 @default.
- W4311543323 creator A5041350996 @default.
- W4311543323 creator A5057905491 @default.
- W4311543323 creator A5059946034 @default.
- W4311543323 creator A5060523641 @default.
- W4311543323 creator A5077161257 @default.
- W4311543323 creator A5081186911 @default.
- W4311543323 creator A5090767059 @default.
- W4311543323 date "2023-02-01" @default.
- W4311543323 modified "2023-10-14" @default.
- W4311543323 title "Bilateral adaptive graph convolutional network on CT based Covid-19 diagnosis with uncertainty-aware consensus-assisted multiple instance learning" @default.
- W4311543323 cites W130099911 @default.
- W4311543323 cites W1526790442 @default.
- W4311543323 cites W1938425378 @default.
- W4311543323 cites W1945608308 @default.
- W4311543323 cites W2010792435 @default.
- W4311543323 cites W2076918999 @default.
- W4311543323 cites W2097117768 @default.
- W4311543323 cites W2110119381 @default.
- W4311543323 cites W2119467724 @default.
- W4311543323 cites W2194775991 @default.
- W4311543323 cites W2269649163 @default.
- W4311543323 cites W2302302587 @default.
- W4311543323 cites W2328176404 @default.
- W4311543323 cites W2531897166 @default.
- W4311543323 cites W2549139847 @default.
- W4311543323 cites W2769848455 @default.
- W4311543323 cites W2800783955 @default.
- W4311543323 cites W2883534172 @default.
- W4311543323 cites W2913592748 @default.
- W4311543323 cites W2928165649 @default.
- W4311543323 cites W2929868177 @default.
- W4311543323 cites W2953040471 @default.
- W4311543323 cites W2956228567 @default.
- W4311543323 cites W2962858109 @default.
- W4311543323 cites W2963091558 @default.
- W4311543323 cites W2963319519 @default.
- W4311543323 cites W2964137095 @default.
- W4311543323 cites W2964236544 @default.
- W4311543323 cites W2978725006 @default.
- W4311543323 cites W2996290406 @default.
- W4311543323 cites W3001118548 @default.
- W4311543323 cites W3001465255 @default.
- W4311543323 cites W3002108456 @default.
- W4311543323 cites W3002476946 @default.
- W4311543323 cites W3003668884 @default.
- W4311543323 cites W3007273493 @default.
- W4311543323 cites W3010061930 @default.
- W4311543323 cites W3010381061 @default.
- W4311543323 cites W3011149445 @default.
- W4311543323 cites W3014453037 @default.
- W4311543323 cites W3015141576 @default.
- W4311543323 cites W3017451406 @default.
- W4311543323 cites W3020653337 @default.
- W4311543323 cites W3023251276 @default.
- W4311543323 cites W3023402713 @default.
- W4311543323 cites W3024575832 @default.
- W4311543323 cites W3025576489 @default.
- W4311543323 cites W3026931681 @default.
- W4311543323 cites W3027763298 @default.
- W4311543323 cites W3027914507 @default.
- W4311543323 cites W3028070348 @default.
- W4311543323 cites W3033272814 @default.
- W4311543323 cites W3034534840 @default.
- W4311543323 cites W3035161717 @default.
- W4311543323 cites W3035526186 @default.
- W4311543323 cites W3035740374 @default.
- W4311543323 cites W3045460727 @default.
- W4311543323 cites W3046023260 @default.
- W4311543323 cites W3047489308 @default.
- W4311543323 cites W3049070089 @default.
- W4311543323 cites W3080237299 @default.
- W4311543323 cites W3081367316 @default.
- W4311543323 cites W3085306326 @default.
- W4311543323 cites W3092266641 @default.
- W4311543323 cites W3092314636 @default.
- W4311543323 cites W3093272769 @default.
- W4311543323 cites W3093282011 @default.
- W4311543323 cites W3098046820 @default.
- W4311543323 cites W3107886162 @default.
- W4311543323 cites W3108802735 @default.
- W4311543323 cites W3120191671 @default.
- W4311543323 cites W3121891683 @default.
- W4311543323 cites W3122950889 @default.
- W4311543323 cites W3126296879 @default.
- W4311543323 cites W3127057363 @default.
- W4311543323 cites W3128511643 @default.
- W4311543323 cites W3128741952 @default.
- W4311543323 cites W3128905600 @default.
- W4311543323 cites W3129581972 @default.