Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311551014> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4311551014 abstract "In this paper, we study the problem of a batch of linearly correlated image alignment, where the observed images are deformed by some unknown domain transformations, and corrupted by additive Gaussian noise and sparse noise simultaneously. By stacking these images as the frontal slices of a third-order tensor, we propose to utilize the tensor factorization method via transformed tensor-tensor product to explore the low-rankness of the underlying tensor, which is factorized into the product of two smaller tensors via transformed tensor-tensor product under any unitary transformation. The main advantage of transformed tensor-tensor product is that its computational complexity is lower compared with the existing literature based on transformed tensor nuclear norm. Moreover, the tensor $ell_p$ $(0<p<1)$ norm is employed to characterize the sparsity of sparse noise and the tensor Frobenius norm is adopted to model additive Gaussian noise. A generalized Gauss-Newton algorithm is designed to solve the resulting model by linearizing the domain transformations and a proximal Gauss-Seidel algorithm is developed to solve the corresponding subproblem. Furthermore, the convergence of the proximal Gauss-Seidel algorithm is established, whose convergence rate is also analyzed based on the Kurdyka-$L$ojasiewicz property. Extensive numerical experiments on real-world image datasets are carried out to demonstrate the superior performance of the proposed method as compared to several state-of-the-art methods in both accuracy and computational time." @default.
- W4311551014 created "2022-12-27" @default.
- W4311551014 creator A5030009104 @default.
- W4311551014 creator A5040871916 @default.
- W4311551014 creator A5072740546 @default.
- W4311551014 date "2022-12-12" @default.
- W4311551014 modified "2023-10-14" @default.
- W4311551014 title "Tensor Factorization via Transformed Tensor-Tensor Product for Image Alignment" @default.
- W4311551014 doi "https://doi.org/10.48550/arxiv.2212.05719" @default.
- W4311551014 hasPublicationYear "2022" @default.
- W4311551014 type Work @default.
- W4311551014 citedByCount "0" @default.
- W4311551014 crossrefType "posted-content" @default.
- W4311551014 hasAuthorship W4311551014A5030009104 @default.
- W4311551014 hasAuthorship W4311551014A5040871916 @default.
- W4311551014 hasAuthorship W4311551014A5072740546 @default.
- W4311551014 hasBestOaLocation W43115510141 @default.
- W4311551014 hasConcept C11413529 @default.
- W4311551014 hasConcept C121332964 @default.
- W4311551014 hasConcept C124007464 @default.
- W4311551014 hasConcept C134306372 @default.
- W4311551014 hasConcept C148125525 @default.
- W4311551014 hasConcept C155281189 @default.
- W4311551014 hasConcept C166077713 @default.
- W4311551014 hasConcept C179371143 @default.
- W4311551014 hasConcept C20178491 @default.
- W4311551014 hasConcept C202444582 @default.
- W4311551014 hasConcept C28826006 @default.
- W4311551014 hasConcept C33923547 @default.
- W4311551014 hasConcept C41008148 @default.
- W4311551014 hasConcept C51255310 @default.
- W4311551014 hasConcept C520416788 @default.
- W4311551014 hasConcept C62520636 @default.
- W4311551014 hasConcept C64835786 @default.
- W4311551014 hasConcept C84114770 @default.
- W4311551014 hasConcept C93776189 @default.
- W4311551014 hasConceptScore W4311551014C11413529 @default.
- W4311551014 hasConceptScore W4311551014C121332964 @default.
- W4311551014 hasConceptScore W4311551014C124007464 @default.
- W4311551014 hasConceptScore W4311551014C134306372 @default.
- W4311551014 hasConceptScore W4311551014C148125525 @default.
- W4311551014 hasConceptScore W4311551014C155281189 @default.
- W4311551014 hasConceptScore W4311551014C166077713 @default.
- W4311551014 hasConceptScore W4311551014C179371143 @default.
- W4311551014 hasConceptScore W4311551014C20178491 @default.
- W4311551014 hasConceptScore W4311551014C202444582 @default.
- W4311551014 hasConceptScore W4311551014C28826006 @default.
- W4311551014 hasConceptScore W4311551014C33923547 @default.
- W4311551014 hasConceptScore W4311551014C41008148 @default.
- W4311551014 hasConceptScore W4311551014C51255310 @default.
- W4311551014 hasConceptScore W4311551014C520416788 @default.
- W4311551014 hasConceptScore W4311551014C62520636 @default.
- W4311551014 hasConceptScore W4311551014C64835786 @default.
- W4311551014 hasConceptScore W4311551014C84114770 @default.
- W4311551014 hasConceptScore W4311551014C93776189 @default.
- W4311551014 hasLocation W43115510141 @default.
- W4311551014 hasOpenAccess W4311551014 @default.
- W4311551014 hasPrimaryLocation W43115510141 @default.
- W4311551014 hasRelatedWork W177285580 @default.
- W4311551014 hasRelatedWork W2056485614 @default.
- W4311551014 hasRelatedWork W2098594986 @default.
- W4311551014 hasRelatedWork W2186765725 @default.
- W4311551014 hasRelatedWork W2312915193 @default.
- W4311551014 hasRelatedWork W2403348579 @default.
- W4311551014 hasRelatedWork W2619660439 @default.
- W4311551014 hasRelatedWork W2964251455 @default.
- W4311551014 hasRelatedWork W2965800182 @default.
- W4311551014 hasRelatedWork W2948436065 @default.
- W4311551014 isParatext "false" @default.
- W4311551014 isRetracted "false" @default.
- W4311551014 workType "article" @default.