Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311552105> ?p ?o ?g. }
- W4311552105 endingPage "14" @default.
- W4311552105 startingPage "1" @default.
- W4311552105 abstract "Regularization methods in linear regression models with manifest variables have been shown to be effective in selecting key predictors from a set of many variables, while improving predictions for novel observations. Regularization methods are particularly attractive for the analysis of complex multidimensional data when theory development is the primary goal; for example when researchers attempt to predict general or specific factors in bifactor models using many potentially relevant predictors. However, applications of regularization methods in such models are still scarce. In a simulation study, we examined the performance of different regularization methods in bifactor-(S-1) models, varying the number of predictors, the correlations with the outcome (effect size), the underlying structure of multicollinearity as well as the sample size, the type of penalty, and a single-step versus a two-step approach. We explore potential caveats in the use of regularization methods in bifactor-(S-1) models, provide practical recommendations, and discuss future directions." @default.
- W4311552105 created "2022-12-27" @default.
- W4311552105 creator A5005386131 @default.
- W4311552105 creator A5020756502 @default.
- W4311552105 creator A5036139818 @default.
- W4311552105 creator A5050045207 @default.
- W4311552105 creator A5067388498 @default.
- W4311552105 creator A5087723541 @default.
- W4311552105 date "2022-12-15" @default.
- W4311552105 modified "2023-09-25" @default.
- W4311552105 title "On the Performance of Different Regularization Methods in Bifactor-(S-1) Models with Explanatory Variables—Caveats, Recommendations, and Future Directions" @default.
- W4311552105 cites W1904366742 @default.
- W4311552105 cites W1913957972 @default.
- W4311552105 cites W1994083798 @default.
- W4311552105 cites W2014844722 @default.
- W4311552105 cites W2049346948 @default.
- W4311552105 cites W2069258226 @default.
- W4311552105 cites W2102760656 @default.
- W4311552105 cites W2119303750 @default.
- W4311552105 cites W2120575449 @default.
- W4311552105 cites W2122825543 @default.
- W4311552105 cites W2123551038 @default.
- W4311552105 cites W2126650229 @default.
- W4311552105 cites W2135046866 @default.
- W4311552105 cites W2168175751 @default.
- W4311552105 cites W2336766371 @default.
- W4311552105 cites W2509369262 @default.
- W4311552105 cites W2560253647 @default.
- W4311552105 cites W2586200125 @default.
- W4311552105 cites W2607263590 @default.
- W4311552105 cites W2725131852 @default.
- W4311552105 cites W2787894218 @default.
- W4311552105 cites W2895400776 @default.
- W4311552105 cites W2914891039 @default.
- W4311552105 cites W2963787255 @default.
- W4311552105 cites W2972619051 @default.
- W4311552105 cites W2995808382 @default.
- W4311552105 cites W2998225886 @default.
- W4311552105 cites W3007308954 @default.
- W4311552105 cites W3015590050 @default.
- W4311552105 cites W3020482790 @default.
- W4311552105 cites W3121452939 @default.
- W4311552105 cites W3167417759 @default.
- W4311552105 cites W4234698323 @default.
- W4311552105 cites W4242935565 @default.
- W4311552105 cites W4294541781 @default.
- W4311552105 doi "https://doi.org/10.1080/10705511.2022.2140664" @default.
- W4311552105 hasPublicationYear "2022" @default.
- W4311552105 type Work @default.
- W4311552105 citedByCount "1" @default.
- W4311552105 countsByYear W43115521052023 @default.
- W4311552105 crossrefType "journal-article" @default.
- W4311552105 hasAuthorship W4311552105A5005386131 @default.
- W4311552105 hasAuthorship W4311552105A5020756502 @default.
- W4311552105 hasAuthorship W4311552105A5036139818 @default.
- W4311552105 hasAuthorship W4311552105A5050045207 @default.
- W4311552105 hasAuthorship W4311552105A5067388498 @default.
- W4311552105 hasAuthorship W4311552105A5087723541 @default.
- W4311552105 hasConcept C105795698 @default.
- W4311552105 hasConcept C119857082 @default.
- W4311552105 hasConcept C129848803 @default.
- W4311552105 hasConcept C149782125 @default.
- W4311552105 hasConcept C152877465 @default.
- W4311552105 hasConcept C154945302 @default.
- W4311552105 hasConcept C163175372 @default.
- W4311552105 hasConcept C189285262 @default.
- W4311552105 hasConcept C2776135515 @default.
- W4311552105 hasConcept C33923547 @default.
- W4311552105 hasConcept C41008148 @default.
- W4311552105 hasConcept C48921125 @default.
- W4311552105 hasConcept C83546350 @default.
- W4311552105 hasConceptScore W4311552105C105795698 @default.
- W4311552105 hasConceptScore W4311552105C119857082 @default.
- W4311552105 hasConceptScore W4311552105C129848803 @default.
- W4311552105 hasConceptScore W4311552105C149782125 @default.
- W4311552105 hasConceptScore W4311552105C152877465 @default.
- W4311552105 hasConceptScore W4311552105C154945302 @default.
- W4311552105 hasConceptScore W4311552105C163175372 @default.
- W4311552105 hasConceptScore W4311552105C189285262 @default.
- W4311552105 hasConceptScore W4311552105C2776135515 @default.
- W4311552105 hasConceptScore W4311552105C33923547 @default.
- W4311552105 hasConceptScore W4311552105C41008148 @default.
- W4311552105 hasConceptScore W4311552105C48921125 @default.
- W4311552105 hasConceptScore W4311552105C83546350 @default.
- W4311552105 hasLocation W43115521051 @default.
- W4311552105 hasOpenAccess W4311552105 @default.
- W4311552105 hasPrimaryLocation W43115521051 @default.
- W4311552105 hasRelatedWork W2114737495 @default.
- W4311552105 hasRelatedWork W2140423938 @default.
- W4311552105 hasRelatedWork W2290706096 @default.
- W4311552105 hasRelatedWork W2471082825 @default.
- W4311552105 hasRelatedWork W2566756418 @default.
- W4311552105 hasRelatedWork W3022629739 @default.
- W4311552105 hasRelatedWork W3188410990 @default.
- W4311552105 hasRelatedWork W4225727896 @default.
- W4311552105 hasRelatedWork W875826547 @default.
- W4311552105 hasRelatedWork W288566741 @default.
- W4311552105 isParatext "false" @default.