Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311552634> ?p ?o ?g. }
- W4311552634 endingPage "e0278988" @default.
- W4311552634 startingPage "e0278988" @default.
- W4311552634 abstract "Opioid Use Disorder (OUD) and opioid overdose (OD) impose huge social and economic burdens on society and health care systems. Research suggests that Medication for Opioid Use Disorder (MOUD) is effective in the treatment of OUD. We use machine learning to investigate the association between patient's adherence to prescribed MOUD along with other risk factors in patients diagnosed with OUD and potential OD following the treatment.We used longitudinal Medicaid claims for two selected US states to subset a total of 26,685 patients with OUD diagnosis and appropriate Medicaid coverage between 2015 and 2018. We considered patient age, sex, region level socio-economic data, past comorbidities, MOUD prescription type and other selected prescribed medications along with the Proportion of Days Covered (PDC) as a proxy for adherence to MOUD as predictive variables for our model, and overdose events as the dependent variable. We applied four different machine learning classifiers and compared their performance, focusing on the importance and effect of PDC as a variable. We also calculated results based on risk stratification, where our models separate high risk individuals from low risk, to assess usefulness in clinical decision-making.Among the selected classifiers, the XGBoost classifier has the highest AUC (0.77) closely followed by the Logistic Regression (LR). The LR has the best stratification result: patients in the top 10% of risk scores account for 35.37% of overdose events over the next 12 month observation period. PDC score calculated over the treatment window is one of the most important features, with better PDC lowering risk of OD, as expected. In terms of risk stratification results, of the 35.37% of overdose events that the predictive model could detect within the top 10% of risk scores, 72.3% of these cases were non-adherent in terms of their medication (PDC <0.8). Targeting the top 10% outcome of the predictive model could decrease the total number of OD events by 10.4%.The best performing models allow identification of, and focus on, those at high risk of opioid overdose. With MOUD being included for the first time as a factor of interest, and being identified as a significant factor, outreach activities related to MOUD can be targeted at those at highest risk." @default.
- W4311552634 created "2022-12-27" @default.
- W4311552634 creator A5003471836 @default.
- W4311552634 creator A5010124468 @default.
- W4311552634 creator A5012182290 @default.
- W4311552634 creator A5022216838 @default.
- W4311552634 creator A5030248538 @default.
- W4311552634 creator A5037781332 @default.
- W4311552634 creator A5049248581 @default.
- W4311552634 creator A5062263267 @default.
- W4311552634 date "2022-12-15" @default.
- W4311552634 modified "2023-09-30" @default.
- W4311552634 title "Using machine learning to study the effect of medication adherence in Opioid Use Disorder" @default.
- W4311552634 cites W1595559280 @default.
- W4311552634 cites W1802066206 @default.
- W4311552634 cites W1966282663 @default.
- W4311552634 cites W1974524186 @default.
- W4311552634 cites W2012149849 @default.
- W4311552634 cites W2057780602 @default.
- W4311552634 cites W2058663068 @default.
- W4311552634 cites W2081240484 @default.
- W4311552634 cites W2081306861 @default.
- W4311552634 cites W2090562839 @default.
- W4311552634 cites W2102368961 @default.
- W4311552634 cites W2116239162 @default.
- W4311552634 cites W2125847307 @default.
- W4311552634 cites W2148143831 @default.
- W4311552634 cites W2158292788 @default.
- W4311552634 cites W2298530262 @default.
- W4311552634 cites W2342007011 @default.
- W4311552634 cites W2518278850 @default.
- W4311552634 cites W2606184753 @default.
- W4311552634 cites W2743729169 @default.
- W4311552634 cites W2792919287 @default.
- W4311552634 cites W2883338918 @default.
- W4311552634 cites W2902753735 @default.
- W4311552634 cites W2919256513 @default.
- W4311552634 cites W2924338030 @default.
- W4311552634 cites W2942500503 @default.
- W4311552634 cites W2947289720 @default.
- W4311552634 cites W3000470572 @default.
- W4311552634 cites W3012030949 @default.
- W4311552634 cites W3015185536 @default.
- W4311552634 cites W3023521963 @default.
- W4311552634 cites W3026430905 @default.
- W4311552634 cites W3042329961 @default.
- W4311552634 cites W3087461509 @default.
- W4311552634 cites W3119512592 @default.
- W4311552634 cites W3139034436 @default.
- W4311552634 cites W3164868662 @default.
- W4311552634 cites W3193563633 @default.
- W4311552634 cites W3198649872 @default.
- W4311552634 cites W3206156826 @default.
- W4311552634 cites W4281606170 @default.
- W4311552634 cites W4288068826 @default.
- W4311552634 cites W4289277718 @default.
- W4311552634 cites W478671 @default.
- W4311552634 doi "https://doi.org/10.1371/journal.pone.0278988" @default.
- W4311552634 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36520864" @default.
- W4311552634 hasPublicationYear "2022" @default.
- W4311552634 type Work @default.
- W4311552634 citedByCount "4" @default.
- W4311552634 countsByYear W43115526342023 @default.
- W4311552634 crossrefType "journal-article" @default.
- W4311552634 hasAuthorship W4311552634A5003471836 @default.
- W4311552634 hasAuthorship W4311552634A5010124468 @default.
- W4311552634 hasAuthorship W4311552634A5012182290 @default.
- W4311552634 hasAuthorship W4311552634A5022216838 @default.
- W4311552634 hasAuthorship W4311552634A5030248538 @default.
- W4311552634 hasAuthorship W4311552634A5037781332 @default.
- W4311552634 hasAuthorship W4311552634A5049248581 @default.
- W4311552634 hasAuthorship W4311552634A5062263267 @default.
- W4311552634 hasBestOaLocation W43115526341 @default.
- W4311552634 hasConcept C118552586 @default.
- W4311552634 hasConcept C119857082 @default.
- W4311552634 hasConcept C126322002 @default.
- W4311552634 hasConcept C144024400 @default.
- W4311552634 hasConcept C147077947 @default.
- W4311552634 hasConcept C149923435 @default.
- W4311552634 hasConcept C151956035 @default.
- W4311552634 hasConcept C160735492 @default.
- W4311552634 hasConcept C162324750 @default.
- W4311552634 hasConcept C167135981 @default.
- W4311552634 hasConcept C170493617 @default.
- W4311552634 hasConcept C194828623 @default.
- W4311552634 hasConcept C2426938 @default.
- W4311552634 hasConcept C2776534028 @default.
- W4311552634 hasConcept C2778750930 @default.
- W4311552634 hasConcept C2779148768 @default.
- W4311552634 hasConcept C2779418921 @default.
- W4311552634 hasConcept C2780148112 @default.
- W4311552634 hasConcept C2781063702 @default.
- W4311552634 hasConcept C2908647359 @default.
- W4311552634 hasConcept C41008148 @default.
- W4311552634 hasConcept C50522688 @default.
- W4311552634 hasConcept C71924100 @default.
- W4311552634 hasConcept C98274493 @default.
- W4311552634 hasConcept C99454951 @default.