Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311553553> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4311553553 abstract "We develop a theory of levels for irreducible representations of symmetric groups of degree $n$ analogous to the theory of levels for finite classical groups. A key property of level is that the level of a character, provided it is not too big compared to $n$, gives a good lower bound on its degree, and, moreover, every character of low degree is either itself of low level or becomes so after tensoring with the sign character. Furthermore, if $l_1$ and $l_2$ satisfy a linear upper bound in $n$, then the maximal level of composition factors of the tensor product of representations of levels $l_1$ and $l_2$ is $l_1+l_2$. To prove all of this in positive characteristic, we develop the notion of rank, which is an analogue of the notion of rank of cross-characteristic representations of finite classical groups. We show, using modular branching rules and degenerate affine Hecke algebras, that the level and the rank agree, as long as the level is not too large. We exploit Schur-Weyl duality, modular Littlewood-Richardson coefficients and tilting modules to prove a modular analogue of the Murnaghan-Littlewood theorem on Kronecker products for symmetric groups. As an application, we obtain representation growth results for both ordinary and modular representations of symmetric and alternating groups analogous to those for finite groups of Lie type." @default.
- W4311553553 created "2022-12-27" @default.
- W4311553553 creator A5020241451 @default.
- W4311553553 creator A5034221126 @default.
- W4311553553 creator A5048108183 @default.
- W4311553553 date "2022-12-12" @default.
- W4311553553 modified "2023-09-25" @default.
- W4311553553 title "Level, rank, and tensor growth of representations of symmetric groups" @default.
- W4311553553 doi "https://doi.org/10.48550/arxiv.2212.06256" @default.
- W4311553553 hasPublicationYear "2022" @default.
- W4311553553 type Work @default.
- W4311553553 citedByCount "0" @default.
- W4311553553 crossrefType "posted-content" @default.
- W4311553553 hasAuthorship W4311553553A5020241451 @default.
- W4311553553 hasAuthorship W4311553553A5034221126 @default.
- W4311553553 hasAuthorship W4311553553A5048108183 @default.
- W4311553553 hasBestOaLocation W43115535531 @default.
- W4311553553 hasConcept C114614502 @default.
- W4311553553 hasConcept C121332964 @default.
- W4311553553 hasConcept C128622974 @default.
- W4311553553 hasConcept C164226766 @default.
- W4311553553 hasConcept C197273675 @default.
- W4311553553 hasConcept C202444582 @default.
- W4311553553 hasConcept C33923547 @default.
- W4311553553 hasConcept C39482219 @default.
- W4311553553 hasConcept C51255310 @default.
- W4311553553 hasConcept C62520636 @default.
- W4311553553 hasConcept C75764964 @default.
- W4311553553 hasConcept C89152604 @default.
- W4311553553 hasConceptScore W4311553553C114614502 @default.
- W4311553553 hasConceptScore W4311553553C121332964 @default.
- W4311553553 hasConceptScore W4311553553C128622974 @default.
- W4311553553 hasConceptScore W4311553553C164226766 @default.
- W4311553553 hasConceptScore W4311553553C197273675 @default.
- W4311553553 hasConceptScore W4311553553C202444582 @default.
- W4311553553 hasConceptScore W4311553553C33923547 @default.
- W4311553553 hasConceptScore W4311553553C39482219 @default.
- W4311553553 hasConceptScore W4311553553C51255310 @default.
- W4311553553 hasConceptScore W4311553553C62520636 @default.
- W4311553553 hasConceptScore W4311553553C75764964 @default.
- W4311553553 hasConceptScore W4311553553C89152604 @default.
- W4311553553 hasLocation W43115535531 @default.
- W4311553553 hasOpenAccess W4311553553 @default.
- W4311553553 hasPrimaryLocation W43115535531 @default.
- W4311553553 hasRelatedWork W1480086350 @default.
- W4311553553 hasRelatedWork W1585429124 @default.
- W4311553553 hasRelatedWork W1994544411 @default.
- W4311553553 hasRelatedWork W2053977423 @default.
- W4311553553 hasRelatedWork W2054802601 @default.
- W4311553553 hasRelatedWork W2091158814 @default.
- W4311553553 hasRelatedWork W2123335300 @default.
- W4311553553 hasRelatedWork W2136100392 @default.
- W4311553553 hasRelatedWork W2442169529 @default.
- W4311553553 hasRelatedWork W4294906440 @default.
- W4311553553 isParatext "false" @default.
- W4311553553 isRetracted "false" @default.
- W4311553553 workType "article" @default.