Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311556304> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4311556304 abstract "Sound-soft fractal screens can scatter acoustic waves even when they have zero surface measure. To solve such scattering problems we make what appears to be the first application of the boundary element method (BEM) where each BEM basis function is supported in a fractal set, and the integration involved in the formation of the BEM matrix is with respect to a non-integer order Hausdorff measure rather than the usual (Lebesgue) surface measure. Using recent results on function spaces on fractals, we prove convergence of the Galerkin formulation of this ``Hausdorff BEM'' for acoustic scattering in $mathbb{R}^{n+1}$ ($n=1,2$) when the scatterer, assumed to be a compact subset of $mathbb{R}^ntimes{0}$, is a $d$-set for some $din (n-1,n]$, so that, in particular, the scatterer has Hausdorff dimension $d$. For a class of fractals that are attractors of iterated function systems, we prove convergence rates for the Hausdorff BEM and superconvergence for smooth antilinear functionals, under certain natural regularity assumptions on the solution of the underlying boundary integral equation. We also propose numerical quadrature routines for the implementation of our Hausdorff BEM, along with a fully discrete convergence analysis, via numerical (Hausdorff measure) integration estimates and inverse estimates on fractals, estimating the discrete condition numbers. Finally, we show numerical experiments that support the sharpness of our theoretical results, and our solution regularity assumptions, including results for scattering in $mathbb{R}^2$ by Cantor sets, and in $mathbb{R}^3$ by Cantor dusts." @default.
- W4311556304 created "2022-12-27" @default.
- W4311556304 creator A5000050500 @default.
- W4311556304 creator A5033909884 @default.
- W4311556304 creator A5037304012 @default.
- W4311556304 creator A5045318480 @default.
- W4311556304 creator A5089364296 @default.
- W4311556304 date "2022-12-13" @default.
- W4311556304 modified "2023-10-06" @default.
- W4311556304 title "A Hausdorff-measure boundary element method for acoustic scattering by fractal screens" @default.
- W4311556304 doi "https://doi.org/10.48550/arxiv.2212.06594" @default.
- W4311556304 hasPublicationYear "2022" @default.
- W4311556304 type Work @default.
- W4311556304 citedByCount "0" @default.
- W4311556304 crossrefType "posted-content" @default.
- W4311556304 hasAuthorship W4311556304A5000050500 @default.
- W4311556304 hasAuthorship W4311556304A5033909884 @default.
- W4311556304 hasAuthorship W4311556304A5037304012 @default.
- W4311556304 hasAuthorship W4311556304A5045318480 @default.
- W4311556304 hasAuthorship W4311556304A5089364296 @default.
- W4311556304 hasBestOaLocation W43115563041 @default.
- W4311556304 hasConcept C118615104 @default.
- W4311556304 hasConcept C121332964 @default.
- W4311556304 hasConcept C134306372 @default.
- W4311556304 hasConcept C135628077 @default.
- W4311556304 hasConcept C14158598 @default.
- W4311556304 hasConcept C141898687 @default.
- W4311556304 hasConcept C168460219 @default.
- W4311556304 hasConcept C191399826 @default.
- W4311556304 hasConcept C194198291 @default.
- W4311556304 hasConcept C2777105136 @default.
- W4311556304 hasConcept C2780009758 @default.
- W4311556304 hasConcept C33923547 @default.
- W4311556304 hasConcept C40636538 @default.
- W4311556304 hasConcept C41008148 @default.
- W4311556304 hasConcept C62354387 @default.
- W4311556304 hasConcept C63632240 @default.
- W4311556304 hasConcept C73225184 @default.
- W4311556304 hasConcept C77088390 @default.
- W4311556304 hasConcept C97355855 @default.
- W4311556304 hasConceptScore W4311556304C118615104 @default.
- W4311556304 hasConceptScore W4311556304C121332964 @default.
- W4311556304 hasConceptScore W4311556304C134306372 @default.
- W4311556304 hasConceptScore W4311556304C135628077 @default.
- W4311556304 hasConceptScore W4311556304C14158598 @default.
- W4311556304 hasConceptScore W4311556304C141898687 @default.
- W4311556304 hasConceptScore W4311556304C168460219 @default.
- W4311556304 hasConceptScore W4311556304C191399826 @default.
- W4311556304 hasConceptScore W4311556304C194198291 @default.
- W4311556304 hasConceptScore W4311556304C2777105136 @default.
- W4311556304 hasConceptScore W4311556304C2780009758 @default.
- W4311556304 hasConceptScore W4311556304C33923547 @default.
- W4311556304 hasConceptScore W4311556304C40636538 @default.
- W4311556304 hasConceptScore W4311556304C41008148 @default.
- W4311556304 hasConceptScore W4311556304C62354387 @default.
- W4311556304 hasConceptScore W4311556304C63632240 @default.
- W4311556304 hasConceptScore W4311556304C73225184 @default.
- W4311556304 hasConceptScore W4311556304C77088390 @default.
- W4311556304 hasConceptScore W4311556304C97355855 @default.
- W4311556304 hasLocation W43115563041 @default.
- W4311556304 hasOpenAccess W4311556304 @default.
- W4311556304 hasPrimaryLocation W43115563041 @default.
- W4311556304 hasRelatedWork W2055365819 @default.
- W4311556304 hasRelatedWork W2151850358 @default.
- W4311556304 hasRelatedWork W2387608300 @default.
- W4311556304 hasRelatedWork W2613139642 @default.
- W4311556304 hasRelatedWork W2949679695 @default.
- W4311556304 hasRelatedWork W2963232400 @default.
- W4311556304 hasRelatedWork W3024314201 @default.
- W4311556304 hasRelatedWork W3197358217 @default.
- W4311556304 hasRelatedWork W3199584106 @default.
- W4311556304 hasRelatedWork W4298815294 @default.
- W4311556304 isParatext "false" @default.
- W4311556304 isRetracted "false" @default.
- W4311556304 workType "article" @default.