Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311557029> ?p ?o ?g. }
- W4311557029 endingPage "e1010718" @default.
- W4311557029 startingPage "e1010718" @default.
- W4311557029 abstract "Applying computational statistics or machine learning methods to data is a key component of many scientific studies, in any field, but alone might not be sufficient to generate robust and reliable outcomes and results. Before applying any discovery method, preprocessing steps are necessary to prepare the data to the computational analysis. In this framework, data cleaning and feature engineering are key pillars of any scientific study involving data analysis and that should be adequately designed and performed since the first phases of the project. We call “feature” a variable describing a particular trait of a person or an observation, recorded usually as a column in a dataset. Even if pivotal, these data cleaning and feature engineering steps sometimes are done poorly or inefficiently, especially by beginners and unexperienced researchers. For this reason, we propose here our quick tips for data cleaning and feature engineering on how to carry out these important preprocessing steps correctly avoiding common mistakes and pitfalls. Although we designed these guidelines with bioinformatics and health informatics scenarios in mind, we believe they can more in general be applied to any scientific area. We therefore target these guidelines to any researcher or practitioners wanting to perform data cleaning or feature engineering. We believe our simple recommendations can help researchers and scholars perform better computational analyses that can lead, in turn, to more solid outcomes and more reliable discoveries." @default.
- W4311557029 created "2022-12-27" @default.
- W4311557029 creator A5011556172 @default.
- W4311557029 creator A5039343044 @default.
- W4311557029 creator A5045802198 @default.
- W4311557029 date "2022-12-15" @default.
- W4311557029 modified "2023-10-16" @default.
- W4311557029 title "Eleven quick tips for data cleaning and feature engineering" @default.
- W4311557029 cites W1187335281 @default.
- W4311557029 cites W1492653423 @default.
- W4311557029 cites W1510073064 @default.
- W4311557029 cites W1570640594 @default.
- W4311557029 cites W1576808520 @default.
- W4311557029 cites W1680622244 @default.
- W4311557029 cites W1742512077 @default.
- W4311557029 cites W1761022139 @default.
- W4311557029 cites W1768179097 @default.
- W4311557029 cites W1971935224 @default.
- W4311557029 cites W1986849266 @default.
- W4311557029 cites W2002645541 @default.
- W4311557029 cites W2008255964 @default.
- W4311557029 cites W2011301426 @default.
- W4311557029 cites W2024812658 @default.
- W4311557029 cites W2036318837 @default.
- W4311557029 cites W2040032582 @default.
- W4311557029 cites W2049446938 @default.
- W4311557029 cites W2056575763 @default.
- W4311557029 cites W2077641783 @default.
- W4311557029 cites W2081028405 @default.
- W4311557029 cites W2083927153 @default.
- W4311557029 cites W2096192437 @default.
- W4311557029 cites W2096506014 @default.
- W4311557029 cites W2103018059 @default.
- W4311557029 cites W2106810132 @default.
- W4311557029 cites W2116814040 @default.
- W4311557029 cites W2131479089 @default.
- W4311557029 cites W2133111499 @default.
- W4311557029 cites W2135606128 @default.
- W4311557029 cites W2140503409 @default.
- W4311557029 cites W2144981148 @default.
- W4311557029 cites W2147013674 @default.
- W4311557029 cites W2161336914 @default.
- W4311557029 cites W2162772535 @default.
- W4311557029 cites W2163922914 @default.
- W4311557029 cites W2191679689 @default.
- W4311557029 cites W2252523470 @default.
- W4311557029 cites W2302501749 @default.
- W4311557029 cites W2315493944 @default.
- W4311557029 cites W2344424577 @default.
- W4311557029 cites W2496114304 @default.
- W4311557029 cites W2533800772 @default.
- W4311557029 cites W2534699084 @default.
- W4311557029 cites W2551432253 @default.
- W4311557029 cites W2592929672 @default.
- W4311557029 cites W2606089314 @default.
- W4311557029 cites W2618025634 @default.
- W4311557029 cites W2691976780 @default.
- W4311557029 cites W2725273399 @default.
- W4311557029 cites W2733722625 @default.
- W4311557029 cites W2739655593 @default.
- W4311557029 cites W2739783898 @default.
- W4311557029 cites W2765811365 @default.
- W4311557029 cites W2766447205 @default.
- W4311557029 cites W2769353087 @default.
- W4311557029 cites W2771169143 @default.
- W4311557029 cites W2771817472 @default.
- W4311557029 cites W2772803673 @default.
- W4311557029 cites W2784283104 @default.
- W4311557029 cites W2790370540 @default.
- W4311557029 cites W2791315675 @default.
- W4311557029 cites W2793630790 @default.
- W4311557029 cites W2794386528 @default.
- W4311557029 cites W2799040448 @default.
- W4311557029 cites W2799900537 @default.
- W4311557029 cites W2802802541 @default.
- W4311557029 cites W2805627121 @default.
- W4311557029 cites W2807124908 @default.
- W4311557029 cites W2897666594 @default.
- W4311557029 cites W2906319771 @default.
- W4311557029 cites W2913694513 @default.
- W4311557029 cites W2941955549 @default.
- W4311557029 cites W2942967593 @default.
- W4311557029 cites W2945020349 @default.
- W4311557029 cites W2955863859 @default.
- W4311557029 cites W2962772482 @default.
- W4311557029 cites W2962843773 @default.
- W4311557029 cites W2963095307 @default.
- W4311557029 cites W2963258365 @default.
- W4311557029 cites W2963360736 @default.
- W4311557029 cites W2963518130 @default.
- W4311557029 cites W2966284335 @default.
- W4311557029 cites W2967098998 @default.
- W4311557029 cites W2971384042 @default.
- W4311557029 cites W2981731882 @default.
- W4311557029 cites W2986579771 @default.
- W4311557029 cites W2991157178 @default.
- W4311557029 cites W2994742268 @default.
- W4311557029 cites W2997785591 @default.