Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311558314> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4311558314 abstract "Our motivation in this paper is twofold. First, we study the geometry of a class of exploration sets, called exit sets, which are naturally associated with a 2D vector-valued GFF : $phi : Z^2 to R^N, Ngeq 1$. We prove that, somewhat surprisingly, these sets are a.s. degenerate as long as $Ngeq 2$, while they are conjectured to be macroscopic and fractal when $N=1$. This analysis allows us, when $Ngeq 2$, to understand the percolation properties of the level sets of ${|phi(x)|, xin Z^2}$ and leads us to our second main motivation in this work: if one projects a spin $O(N+1)$ model (classical Heisenberg model is $N=2$) down to a spin $O(N)$ model, we end up with a spin $O(N)$ in a quenched disorder given by random conductances on $Z^2$. Using the exit sets of the $N$-vector-valued GFF, we obtain a local and geometric description of this random disorder in the limit $betato infty$. This allows us to revisit a series of celebrated works by Patrascioiu and Seiler ([PS92, PS93, PS02]) which argued against Polyakov's prediction that spin $O(N+1)$ model is massive at all temperatures when $Ngeq 2$ ([Pol75]). We make part of their arguments rigorous and more importantly we provide the following counter-example: we build ergodic environments of (arbitrary) high conductances with (arbitrary) small and disconnected regions of low conductances in which, despite the predominance of high conductances, the $XY$ model remains massive. Of independent interest, we prove that at high $beta$, the transverse fluctuations of a classical Heisenberg model are given by a $N=2$ vectorial GFF. This is implicit in [Pol75] but we give here the first (non-trivial) rigorous proof. Also, independently of the recent work [DF22], we show that two-point correlation functions of the spin $O(N)$ model are given in terms of certain percolation events in the cable graph for any $Ngeq 1$." @default.
- W4311558314 created "2022-12-27" @default.
- W4311558314 creator A5005041122 @default.
- W4311558314 creator A5046071283 @default.
- W4311558314 creator A5071014301 @default.
- W4311558314 date "2022-12-13" @default.
- W4311558314 modified "2023-09-25" @default.
- W4311558314 title "Percolation for 2D classical Heisenberg model and exit sets of vector valued GFF" @default.
- W4311558314 doi "https://doi.org/10.48550/arxiv.2212.06767" @default.
- W4311558314 hasPublicationYear "2022" @default.
- W4311558314 type Work @default.
- W4311558314 citedByCount "0" @default.
- W4311558314 crossrefType "posted-content" @default.
- W4311558314 hasAuthorship W4311558314A5005041122 @default.
- W4311558314 hasAuthorship W4311558314A5046071283 @default.
- W4311558314 hasAuthorship W4311558314A5071014301 @default.
- W4311558314 hasBestOaLocation W43115583141 @default.
- W4311558314 hasConcept C114614502 @default.
- W4311558314 hasConcept C121332964 @default.
- W4311558314 hasConcept C121864883 @default.
- W4311558314 hasConcept C122044880 @default.
- W4311558314 hasConcept C169760540 @default.
- W4311558314 hasConcept C202444582 @default.
- W4311558314 hasConcept C2780457167 @default.
- W4311558314 hasConcept C33923547 @default.
- W4311558314 hasConcept C37914503 @default.
- W4311558314 hasConcept C42704618 @default.
- W4311558314 hasConcept C62520636 @default.
- W4311558314 hasConcept C72319582 @default.
- W4311558314 hasConcept C86803240 @default.
- W4311558314 hasConcept C97355855 @default.
- W4311558314 hasConceptScore W4311558314C114614502 @default.
- W4311558314 hasConceptScore W4311558314C121332964 @default.
- W4311558314 hasConceptScore W4311558314C121864883 @default.
- W4311558314 hasConceptScore W4311558314C122044880 @default.
- W4311558314 hasConceptScore W4311558314C169760540 @default.
- W4311558314 hasConceptScore W4311558314C202444582 @default.
- W4311558314 hasConceptScore W4311558314C2780457167 @default.
- W4311558314 hasConceptScore W4311558314C33923547 @default.
- W4311558314 hasConceptScore W4311558314C37914503 @default.
- W4311558314 hasConceptScore W4311558314C42704618 @default.
- W4311558314 hasConceptScore W4311558314C62520636 @default.
- W4311558314 hasConceptScore W4311558314C72319582 @default.
- W4311558314 hasConceptScore W4311558314C86803240 @default.
- W4311558314 hasConceptScore W4311558314C97355855 @default.
- W4311558314 hasLocation W43115583141 @default.
- W4311558314 hasOpenAccess W4311558314 @default.
- W4311558314 hasPrimaryLocation W43115583141 @default.
- W4311558314 hasRelatedWork W2012873353 @default.
- W4311558314 hasRelatedWork W2032798063 @default.
- W4311558314 hasRelatedWork W2059461087 @default.
- W4311558314 hasRelatedWork W2070532359 @default.
- W4311558314 hasRelatedWork W2170042920 @default.
- W4311558314 hasRelatedWork W2188829441 @default.
- W4311558314 hasRelatedWork W2951917173 @default.
- W4311558314 hasRelatedWork W3125804320 @default.
- W4311558314 hasRelatedWork W4249828619 @default.
- W4311558314 hasRelatedWork W902770993 @default.
- W4311558314 isParatext "false" @default.
- W4311558314 isRetracted "false" @default.
- W4311558314 workType "article" @default.