Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311571047> ?p ?o ?g. }
- W4311571047 endingPage "115447" @default.
- W4311571047 startingPage "115447" @default.
- W4311571047 abstract "Recognising that ultra-high-performance concrete (UHPC) is gaining momentum in structural applications, providing an accurate confinement model is essential to developing a reliable design of UHPC structural members. However, very limited number of models are currently available and these models were empirically formulated and calibrated upon limited test data obtained by the originators of the models. The significant cost associated with comprehensive experimental testing motivates the exploration of cheaper and more efficient data-driven based machine learning approach. This study proposes a sequential artificial neural network (ANN) framework to develop such a data-driven confinement model, incorporating a comprehensive database of 228 axially loaded UHPC columns compiled from available literature. Three deep feed-forward neural network models were established to predict the ultimate stress, ultimate strain and stress–strain behaviour of confined UHPC. The results show that the proposed ANN-based ultimate condition models provide a more robust prediction results compared to the existing design-oriented models for confined UHPC. The stress–strain behaviour, predicted using the proposed ANN model, shows high accuracy levels in capturing different types of stress–strain curves as well as reasonably matching results with those experimentally measured responses. The encouraging outcomes in this study suggest that the proposed models are capable of providing rapid prediction tools that will help to facilitate the on-demand design of UHPC structural components and systems." @default.
- W4311571047 created "2022-12-27" @default.
- W4311571047 creator A5023864614 @default.
- W4311571047 creator A5028253291 @default.
- W4311571047 creator A5079085246 @default.
- W4311571047 creator A5083075559 @default.
- W4311571047 creator A5088369199 @default.
- W4311571047 date "2023-02-01" @default.
- W4311571047 modified "2023-10-17" @default.
- W4311571047 title "Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy" @default.
- W4311571047 cites W1553611078 @default.
- W4311571047 cites W1555395456 @default.
- W4311571047 cites W1969066155 @default.
- W4311571047 cites W1969760883 @default.
- W4311571047 cites W1977626992 @default.
- W4311571047 cites W1979095459 @default.
- W4311571047 cites W2004320657 @default.
- W4311571047 cites W2008226799 @default.
- W4311571047 cites W2029325179 @default.
- W4311571047 cites W2035343533 @default.
- W4311571047 cites W2049398317 @default.
- W4311571047 cites W2051835934 @default.
- W4311571047 cites W2054761404 @default.
- W4311571047 cites W2069277403 @default.
- W4311571047 cites W2076702855 @default.
- W4311571047 cites W2077029805 @default.
- W4311571047 cites W2077458446 @default.
- W4311571047 cites W2082210318 @default.
- W4311571047 cites W2090001977 @default.
- W4311571047 cites W2094358295 @default.
- W4311571047 cites W2106100979 @default.
- W4311571047 cites W2125885335 @default.
- W4311571047 cites W2143908786 @default.
- W4311571047 cites W2155482699 @default.
- W4311571047 cites W2169053895 @default.
- W4311571047 cites W2181298461 @default.
- W4311571047 cites W2196996472 @default.
- W4311571047 cites W2404318502 @default.
- W4311571047 cites W2490988077 @default.
- W4311571047 cites W2598144966 @default.
- W4311571047 cites W2613441664 @default.
- W4311571047 cites W2748244593 @default.
- W4311571047 cites W2791831695 @default.
- W4311571047 cites W2890370646 @default.
- W4311571047 cites W2948047681 @default.
- W4311571047 cites W2972222707 @default.
- W4311571047 cites W2974415697 @default.
- W4311571047 cites W3008815647 @default.
- W4311571047 cites W3025572851 @default.
- W4311571047 cites W3035519596 @default.
- W4311571047 cites W3042163933 @default.
- W4311571047 cites W3089764059 @default.
- W4311571047 cites W3117002729 @default.
- W4311571047 cites W3117691613 @default.
- W4311571047 cites W3122701421 @default.
- W4311571047 cites W3138087611 @default.
- W4311571047 cites W3194311761 @default.
- W4311571047 cites W4210481164 @default.
- W4311571047 cites W4281251829 @default.
- W4311571047 cites W4295122672 @default.
- W4311571047 doi "https://doi.org/10.1016/j.engstruct.2022.115447" @default.
- W4311571047 hasPublicationYear "2023" @default.
- W4311571047 type Work @default.
- W4311571047 citedByCount "7" @default.
- W4311571047 countsByYear W43115710472023 @default.
- W4311571047 crossrefType "journal-article" @default.
- W4311571047 hasAuthorship W4311571047A5023864614 @default.
- W4311571047 hasAuthorship W4311571047A5028253291 @default.
- W4311571047 hasAuthorship W4311571047A5079085246 @default.
- W4311571047 hasAuthorship W4311571047A5083075559 @default.
- W4311571047 hasAuthorship W4311571047A5088369199 @default.
- W4311571047 hasConcept C105795698 @default.
- W4311571047 hasConcept C115903868 @default.
- W4311571047 hasConcept C119857082 @default.
- W4311571047 hasConcept C127413603 @default.
- W4311571047 hasConcept C138885662 @default.
- W4311571047 hasConcept C154945302 @default.
- W4311571047 hasConcept C165064840 @default.
- W4311571047 hasConcept C16910744 @default.
- W4311571047 hasConcept C21036866 @default.
- W4311571047 hasConcept C2777115002 @default.
- W4311571047 hasConcept C33923547 @default.
- W4311571047 hasConcept C41008148 @default.
- W4311571047 hasConcept C41895202 @default.
- W4311571047 hasConcept C44154836 @default.
- W4311571047 hasConcept C45804977 @default.
- W4311571047 hasConcept C50644808 @default.
- W4311571047 hasConcept C55037315 @default.
- W4311571047 hasConcept C66938386 @default.
- W4311571047 hasConceptScore W4311571047C105795698 @default.
- W4311571047 hasConceptScore W4311571047C115903868 @default.
- W4311571047 hasConceptScore W4311571047C119857082 @default.
- W4311571047 hasConceptScore W4311571047C127413603 @default.
- W4311571047 hasConceptScore W4311571047C138885662 @default.
- W4311571047 hasConceptScore W4311571047C154945302 @default.
- W4311571047 hasConceptScore W4311571047C165064840 @default.
- W4311571047 hasConceptScore W4311571047C16910744 @default.
- W4311571047 hasConceptScore W4311571047C21036866 @default.