Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311583182> ?p ?o ?g. }
- W4311583182 endingPage "e0278112" @default.
- W4311583182 startingPage "e0278112" @default.
- W4311583182 abstract "Forecasting is of utmost importance for the Tourism Industry. The development of models to predict visitation demand to specific places is essential to formulate adequate tourism development plans and policies. Yet, only a handful of models deal with the hard problem of fine-grained (per attraction) tourism demand prediction. In this paper, we argue that three key requirements of this type of application should be fulfilled: (i) recency—forecasting models should consider the impact of recent events (e.g. weather change, epidemics and pandemics); (ii) seasonality—tourism behavior is inherently seasonal; and (iii) model specialization—individual attractions may have very specific idiosyncratic patterns of visitations that should be taken into account. These three key requirements should be considered explicitly and in conjunction to advance the state-of-the-art in tourism prediction models. In our experiments, considering a rich set of indoor and outdoor attractions with environmental and social data, the explicit incorporation of such requirements as features into the models improved the rate of highly accurate predictions by more than 320% when compared to the current state-of-the-art in the field. Moreover, they also help to solve very difficult prediction cases, previously poorly solved by the current models. We also investigate the performance of the models in the (simulated) scenarios in which it is impossible to fulfill all three requirements—for instance, when there is not enough historical data for an attraction to capture seasonality. All in all, the main contributions of this paper are the proposal and evaluation of a new information architecture for fine-grained tourism demand prediction models as well as a quantification of the impact of each of the three aforementioned factors on the accuracy of the learned models. Our results have both theoretical and practical implications towards solving important touristic business demands." @default.
- W4311583182 created "2022-12-27" @default.
- W4311583182 creator A5006698733 @default.
- W4311583182 creator A5031700027 @default.
- W4311583182 creator A5037898474 @default.
- W4311583182 creator A5084044470 @default.
- W4311583182 date "2022-12-08" @default.
- W4311583182 modified "2023-10-14" @default.
- W4311583182 title "A quantitative analysis of the impact of explicit incorporation of recency, seasonality and model specialization into fine-grained tourism demand prediction models" @default.
- W4311583182 cites W1600498798 @default.
- W4311583182 cites W2039693986 @default.
- W4311583182 cites W2064675550 @default.
- W4311583182 cites W2084296691 @default.
- W4311583182 cites W2099983014 @default.
- W4311583182 cites W2102296015 @default.
- W4311583182 cites W2107522868 @default.
- W4311583182 cites W2324562510 @default.
- W4311583182 cites W2341433849 @default.
- W4311583182 cites W2493112503 @default.
- W4311583182 cites W2512242738 @default.
- W4311583182 cites W2560592041 @default.
- W4311583182 cites W2567950342 @default.
- W4311583182 cites W2611791389 @default.
- W4311583182 cites W2796813311 @default.
- W4311583182 cites W2956198257 @default.
- W4311583182 cites W3021555771 @default.
- W4311583182 cites W3034288410 @default.
- W4311583182 cites W3155875153 @default.
- W4311583182 cites W4200357890 @default.
- W4311583182 cites W4301856975 @default.
- W4311583182 doi "https://doi.org/10.1371/journal.pone.0278112" @default.
- W4311583182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36480566" @default.
- W4311583182 hasPublicationYear "2022" @default.
- W4311583182 type Work @default.
- W4311583182 citedByCount "0" @default.
- W4311583182 crossrefType "journal-article" @default.
- W4311583182 hasAuthorship W4311583182A5006698733 @default.
- W4311583182 hasAuthorship W4311583182A5031700027 @default.
- W4311583182 hasAuthorship W4311583182A5037898474 @default.
- W4311583182 hasAuthorship W4311583182A5084044470 @default.
- W4311583182 hasBestOaLocation W43115831821 @default.
- W4311583182 hasConcept C11413529 @default.
- W4311583182 hasConcept C119857082 @default.
- W4311583182 hasConcept C125403950 @default.
- W4311583182 hasConcept C149782125 @default.
- W4311583182 hasConcept C162324750 @default.
- W4311583182 hasConcept C166957645 @default.
- W4311583182 hasConcept C18918823 @default.
- W4311583182 hasConcept C193809577 @default.
- W4311583182 hasConcept C202444582 @default.
- W4311583182 hasConcept C205649164 @default.
- W4311583182 hasConcept C2522767166 @default.
- W4311583182 hasConcept C26517878 @default.
- W4311583182 hasConcept C33923547 @default.
- W4311583182 hasConcept C38652104 @default.
- W4311583182 hasConcept C41008148 @default.
- W4311583182 hasConcept C42475967 @default.
- W4311583182 hasConcept C48103436 @default.
- W4311583182 hasConcept C9652623 @default.
- W4311583182 hasConceptScore W4311583182C11413529 @default.
- W4311583182 hasConceptScore W4311583182C119857082 @default.
- W4311583182 hasConceptScore W4311583182C125403950 @default.
- W4311583182 hasConceptScore W4311583182C149782125 @default.
- W4311583182 hasConceptScore W4311583182C162324750 @default.
- W4311583182 hasConceptScore W4311583182C166957645 @default.
- W4311583182 hasConceptScore W4311583182C18918823 @default.
- W4311583182 hasConceptScore W4311583182C193809577 @default.
- W4311583182 hasConceptScore W4311583182C202444582 @default.
- W4311583182 hasConceptScore W4311583182C205649164 @default.
- W4311583182 hasConceptScore W4311583182C2522767166 @default.
- W4311583182 hasConceptScore W4311583182C26517878 @default.
- W4311583182 hasConceptScore W4311583182C33923547 @default.
- W4311583182 hasConceptScore W4311583182C38652104 @default.
- W4311583182 hasConceptScore W4311583182C41008148 @default.
- W4311583182 hasConceptScore W4311583182C42475967 @default.
- W4311583182 hasConceptScore W4311583182C48103436 @default.
- W4311583182 hasConceptScore W4311583182C9652623 @default.
- W4311583182 hasFunder F4320322025 @default.
- W4311583182 hasFunder F4320322980 @default.
- W4311583182 hasIssue "12" @default.
- W4311583182 hasLocation W43115831821 @default.
- W4311583182 hasLocation W43115831822 @default.
- W4311583182 hasLocation W43115831823 @default.
- W4311583182 hasOpenAccess W4311583182 @default.
- W4311583182 hasPrimaryLocation W43115831821 @default.
- W4311583182 hasRelatedWork W1970472340 @default.
- W4311583182 hasRelatedWork W2014145616 @default.
- W4311583182 hasRelatedWork W202945371 @default.
- W4311583182 hasRelatedWork W2059241490 @default.
- W4311583182 hasRelatedWork W2125395284 @default.
- W4311583182 hasRelatedWork W2391061603 @default.
- W4311583182 hasRelatedWork W2616486534 @default.
- W4311583182 hasRelatedWork W2888765086 @default.
- W4311583182 hasRelatedWork W4206520125 @default.
- W4311583182 hasRelatedWork W4282936821 @default.
- W4311583182 hasVolume "17" @default.
- W4311583182 isParatext "false" @default.
- W4311583182 isRetracted "false" @default.