Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311591489> ?p ?o ?g. }
- W4311591489 endingPage "114504" @default.
- W4311591489 startingPage "114504" @default.
- W4311591489 abstract "In this study, we investigated the low-frequency spectra below 650 cm−1 of aqueous reline solutions with various concentrations via femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES) and molecular dynamics (MD) simulations. The density, surface tension, viscosity, and electrical conductivity of the aqueous reline solutions were also measured. In the low-frequency spectrum, the peak frequency due to intermolecular vibrations of the aqueous reline solutions proportionally shifted to lower frequency with increasing the water content (CH2O; wt%). The density of state (DOS) spectra of aqueous reline solutions obtained via MD simulations also showed a red shift of the low-frequency spectrum upon increasing CH2O. A decomposition analysis of the DOS spectra revealed that the peaks corresponding to all components, that is, choline cation, urea, chloride, and water, showed a lower frequency shift in the DOS spectrum with increasing CH2O. The plot of the peak frequency of the low-frequency spectrum vs the bulk parameter γ/ρ (γ: surface tension; ρ: density) in aqueous reline solutions showed two relations at a turning point CH2O = 10 wt%, which can be attributed to a change in the microscopic structure of the aqueous reline solution from a bulk-like reline structure to reline clusters." @default.
- W4311591489 created "2022-12-27" @default.
- W4311591489 creator A5005545758 @default.
- W4311591489 creator A5007268087 @default.
- W4311591489 creator A5024734223 @default.
- W4311591489 creator A5036301051 @default.
- W4311591489 creator A5060188361 @default.
- W4311591489 creator A5089187564 @default.
- W4311591489 date "2023-03-01" @default.
- W4311591489 modified "2023-10-16" @default.
- W4311591489 title "Low-frequency spectra of reline and its mixtures with water: A comparative study based on femtosecond Raman-induced Kerr effect spectroscopy and molecular dynamics simulations" @default.
- W4311591489 cites W1640540845 @default.
- W4311591489 cites W1936647196 @default.
- W4311591489 cites W1967021660 @default.
- W4311591489 cites W1967410318 @default.
- W4311591489 cites W1971127208 @default.
- W4311591489 cites W1974761920 @default.
- W4311591489 cites W1977120652 @default.
- W4311591489 cites W1977671492 @default.
- W4311591489 cites W1981695545 @default.
- W4311591489 cites W1981696528 @default.
- W4311591489 cites W1992140075 @default.
- W4311591489 cites W1995744636 @default.
- W4311591489 cites W1996069154 @default.
- W4311591489 cites W1998621105 @default.
- W4311591489 cites W1998737430 @default.
- W4311591489 cites W2001708016 @default.
- W4311591489 cites W2003949305 @default.
- W4311591489 cites W2009897620 @default.
- W4311591489 cites W2011100652 @default.
- W4311591489 cites W2011269294 @default.
- W4311591489 cites W2015270004 @default.
- W4311591489 cites W2015378514 @default.
- W4311591489 cites W2017816047 @default.
- W4311591489 cites W2017898890 @default.
- W4311591489 cites W2027385130 @default.
- W4311591489 cites W2031923506 @default.
- W4311591489 cites W2035266068 @default.
- W4311591489 cites W2035687084 @default.
- W4311591489 cites W2048254534 @default.
- W4311591489 cites W2049475242 @default.
- W4311591489 cites W2050406810 @default.
- W4311591489 cites W2053308177 @default.
- W4311591489 cites W2057477511 @default.
- W4311591489 cites W2057613108 @default.
- W4311591489 cites W2059400512 @default.
- W4311591489 cites W2062528445 @default.
- W4311591489 cites W2064771846 @default.
- W4311591489 cites W2065820312 @default.
- W4311591489 cites W2067685498 @default.
- W4311591489 cites W2067906475 @default.
- W4311591489 cites W2072706452 @default.
- W4311591489 cites W2073690435 @default.
- W4311591489 cites W2074069636 @default.
- W4311591489 cites W2084028885 @default.
- W4311591489 cites W2085989165 @default.
- W4311591489 cites W2087277033 @default.
- W4311591489 cites W2104251825 @default.
- W4311591489 cites W2111057425 @default.
- W4311591489 cites W2116073741 @default.
- W4311591489 cites W2121013324 @default.
- W4311591489 cites W2128354912 @default.
- W4311591489 cites W2128572087 @default.
- W4311591489 cites W2136418495 @default.
- W4311591489 cites W2137817882 @default.
- W4311591489 cites W2173729444 @default.
- W4311591489 cites W2289390187 @default.
- W4311591489 cites W2319128214 @default.
- W4311591489 cites W2321005010 @default.
- W4311591489 cites W2324483558 @default.
- W4311591489 cites W2327614703 @default.
- W4311591489 cites W2328451214 @default.
- W4311591489 cites W2341236653 @default.
- W4311591489 cites W2414258192 @default.
- W4311591489 cites W2610973917 @default.
- W4311591489 cites W2748127642 @default.
- W4311591489 cites W2888770327 @default.
- W4311591489 cites W2896578268 @default.
- W4311591489 cites W2901844845 @default.
- W4311591489 cites W2948577131 @default.
- W4311591489 cites W2979793077 @default.
- W4311591489 cites W2991836918 @default.
- W4311591489 cites W2993973520 @default.
- W4311591489 cites W3005636270 @default.
- W4311591489 cites W3013493115 @default.
- W4311591489 cites W3022806437 @default.
- W4311591489 cites W3110668392 @default.
- W4311591489 cites W3119735391 @default.
- W4311591489 cites W3131709623 @default.
- W4311591489 cites W3158629554 @default.
- W4311591489 cites W3173686782 @default.
- W4311591489 cites W4205770547 @default.
- W4311591489 cites W4211159135 @default.
- W4311591489 cites W4213072691 @default.
- W4311591489 doi "https://doi.org/10.1016/j.jphotochem.2022.114504" @default.
- W4311591489 hasPublicationYear "2023" @default.
- W4311591489 type Work @default.
- W4311591489 citedByCount "3" @default.