Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311594426> ?p ?o ?g. }
- W4311594426 endingPage "e01774" @default.
- W4311594426 startingPage "e01774" @default.
- W4311594426 abstract "This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new and advanced models for prediction of Marshall Stability (MS), and Marshall Flow (MF) of asphalt mixes. A comprehensive and detailed database of 343 data points was established for both MS and MF. The predicting variables were chosen among the four most influential, and easy-to-determine parameters. The models were trained, tested, validated, and the outcomes of the newly developed models were compared with actual outcomes. The root squared error (RSE), Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RRMSE), regression coefficient (R2), and correlation coefficient (R), were all used to evaluate the performance of models. The sensitivity analysis (SA) revealed that in the case of MS, the rising order of input significance was bulk specific gravity of compacted aggregate, Gmb (38.56%) > Percentage of Aggregates, Ps (19.84%) > Bulk Specific Gravity of Aggregate, Gsb (19.43%) > maximum specific gravity paving mix, Gmm (7.62%), while in case of MF the order followed was: Ps (36.93%) > Gsb (14.11%) > Gmb (10.85%) > Gmm (10.19%). The outcomes of parametric analysis (PA) consistency of results in relation to previous research findings. The DT-Bagging model outperformed all other models with values of 0.971 and 0.980 (R), 16.88 and 0.24 (MAE), 28.27 and 0.36 (RMSE), 0.069 and 0.041 (RSE), 0.020 and 0.032 (RRMSE), 0.010 and 0.016 (PI), 0.931 and 0.959 (NSE), for MS and MF, respectively. The results of the comparison analysis showed that ANN, ANFIS, MEP, and DT-Bagging are all effective and reliable approaches for the estimation of MS and MF. The MEP-derived mathematical expressions represent the novelty of MEP and are relatively simple and reliable. Roverall values for MS and MF were in the order of DT-Bagging >MEP >ANFIS >ANN with all values exceeding the permitted range of 0.80 for both MS and MF. Hence, all the modeling approaches showed higher performance, possessed high generalization and predication capabilities, and assess the relative significance of input parameters in the prediction of MS and MF. Hence, the findings of this research study would assist in the safer, faster, and sustainable prediction of MS and MF, from the standpoint of resources and time required to perform the Marshall tests." @default.
- W4311594426 created "2022-12-27" @default.
- W4311594426 creator A5004968882 @default.
- W4311594426 creator A5006101638 @default.
- W4311594426 creator A5009921582 @default.
- W4311594426 creator A5023754807 @default.
- W4311594426 creator A5024288525 @default.
- W4311594426 creator A5065531316 @default.
- W4311594426 creator A5073427380 @default.
- W4311594426 creator A5080972827 @default.
- W4311594426 creator A5089128517 @default.
- W4311594426 date "2023-07-01" @default.
- W4311594426 modified "2023-09-30" @default.
- W4311594426 title "Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: A comparative study" @default.
- W4311594426 cites W1694601526 @default.
- W4311594426 cites W1964394164 @default.
- W4311594426 cites W1968289563 @default.
- W4311594426 cites W1969065544 @default.
- W4311594426 cites W1970384904 @default.
- W4311594426 cites W1986991372 @default.
- W4311594426 cites W1990376605 @default.
- W4311594426 cites W1995341919 @default.
- W4311594426 cites W1996750440 @default.
- W4311594426 cites W1998253841 @default.
- W4311594426 cites W2009085104 @default.
- W4311594426 cites W2011580004 @default.
- W4311594426 cites W2014997186 @default.
- W4311594426 cites W2016436201 @default.
- W4311594426 cites W2017634795 @default.
- W4311594426 cites W2019207321 @default.
- W4311594426 cites W2034957637 @default.
- W4311594426 cites W2057652484 @default.
- W4311594426 cites W2077053944 @default.
- W4311594426 cites W2094749864 @default.
- W4311594426 cites W2096185550 @default.
- W4311594426 cites W2099447846 @default.
- W4311594426 cites W2105489270 @default.
- W4311594426 cites W2161329384 @default.
- W4311594426 cites W2171308009 @default.
- W4311594426 cites W2346297907 @default.
- W4311594426 cites W2439281291 @default.
- W4311594426 cites W246397101 @default.
- W4311594426 cites W2469127753 @default.
- W4311594426 cites W2469903943 @default.
- W4311594426 cites W2506898025 @default.
- W4311594426 cites W2545011432 @default.
- W4311594426 cites W2610090978 @default.
- W4311594426 cites W2742582396 @default.
- W4311594426 cites W2743012292 @default.
- W4311594426 cites W2763196246 @default.
- W4311594426 cites W2791136957 @default.
- W4311594426 cites W2804755586 @default.
- W4311594426 cites W2902098804 @default.
- W4311594426 cites W2903152670 @default.
- W4311594426 cites W2908310583 @default.
- W4311594426 cites W2909793142 @default.
- W4311594426 cites W2912302637 @default.
- W4311594426 cites W2922494806 @default.
- W4311594426 cites W2923815186 @default.
- W4311594426 cites W2946148730 @default.
- W4311594426 cites W2956787875 @default.
- W4311594426 cites W2957606078 @default.
- W4311594426 cites W2965383324 @default.
- W4311594426 cites W2970262866 @default.
- W4311594426 cites W2976039593 @default.
- W4311594426 cites W2979950223 @default.
- W4311594426 cites W2980539464 @default.
- W4311594426 cites W2981581709 @default.
- W4311594426 cites W2996991292 @default.
- W4311594426 cites W3001457794 @default.
- W4311594426 cites W3015444992 @default.
- W4311594426 cites W3015723457 @default.
- W4311594426 cites W3036573352 @default.
- W4311594426 cites W3042690205 @default.
- W4311594426 cites W3087292529 @default.
- W4311594426 cites W3088112144 @default.
- W4311594426 cites W3091212712 @default.
- W4311594426 cites W3093186795 @default.
- W4311594426 cites W3102283426 @default.
- W4311594426 cites W3120236245 @default.
- W4311594426 cites W3120679585 @default.
- W4311594426 cites W3127988635 @default.
- W4311594426 cites W3128759053 @default.
- W4311594426 cites W3136814736 @default.
- W4311594426 cites W3159185355 @default.
- W4311594426 cites W3189119887 @default.
- W4311594426 cites W4200084803 @default.
- W4311594426 cites W4220690854 @default.
- W4311594426 cites W4220861019 @default.
- W4311594426 cites W4221019965 @default.
- W4311594426 cites W4226443668 @default.
- W4311594426 cites W4303437377 @default.
- W4311594426 cites W577010948 @default.
- W4311594426 cites W608402566 @default.
- W4311594426 cites W965743452 @default.
- W4311594426 doi "https://doi.org/10.1016/j.cscm.2022.e01774" @default.
- W4311594426 hasPublicationYear "2023" @default.
- W4311594426 type Work @default.