Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311597411> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4311597411 abstract "To address ambitious goals of carbon neutrality set at national and city scales, a number of atmospheric networks have been deployed to monitor greenhouse gas (GHG) concentrations in and around cities. To convert these measurements into estimates of emissions from cities, atmospheric models are used to simulate the transport of various tracer gases and help interpret these measurements. We set up a modelling framework using the Weather Research and Forecasting (WRF) model applied at a high spatial resolution (up to 400 m) to simulate the atmospheric transport of GHGs and interpret the observations provided by the Munich Urban Carbon Column Network (MUCCnet). Building on previous analyses using similar measurements performed within a campaign for the city of Berlin and its surroundings (Zhao et al., 2019), our modelling framework has been improved regarding the initialization of tagged tracers, model settings, and input data. To assess the model performance, we validate the modelled output against two local weather stations and observed column GHG concentrations provided by MUCCnet from 1 to 30 August 2018. The modelled wind matches well with the measurements from the weather stations, with wind speeds slightly overestimated. The measured slant column concentrations of GHGs and their variability are generally reproduced by the model, with a bias in CO2 of around 3.7 ppm that can be attributed to the initial and boundary conditions used. The differential column method (DCM) has been applied to cancel out the influence from the background concentrations of CO2. We optimize its application by selecting suitable days on which the assumption of the DCM holds true: a relatively uniform air mass travels over the city, passing from an upwind site to a downwind site. In particular, the Stochastic Time-Inverted Lagrangian Transport model (STILT) is used here and driven by our WRF modelled meteorological fields to obtain footprints (i.e., the potential areas of influence for signals observed at specific points), further used for interpreting measurement results. Combining these footprints with knowledge of local emission sources, we find evidence of CH4 sources near Munich that are missing or underestimated in the emission inventory used. This demonstrates the potential of this data-model framework to constrain local sources and improve emission inventories." @default.
- W4311597411 created "2022-12-27" @default.
- W4311597411 date "2022-12-16" @default.
- W4311597411 modified "2023-10-01" @default.
- W4311597411 title "Comment on acp-2022-281" @default.
- W4311597411 doi "https://doi.org/10.5194/acp-2022-281-rc2" @default.
- W4311597411 hasPublicationYear "2022" @default.
- W4311597411 type Work @default.
- W4311597411 citedByCount "0" @default.
- W4311597411 crossrefType "peer-review" @default.
- W4311597411 hasBestOaLocation W43115974111 @default.
- W4311597411 hasConcept C111368507 @default.
- W4311597411 hasConcept C114466953 @default.
- W4311597411 hasConcept C119666444 @default.
- W4311597411 hasConcept C121332964 @default.
- W4311597411 hasConcept C126042441 @default.
- W4311597411 hasConcept C127313418 @default.
- W4311597411 hasConcept C133204551 @default.
- W4311597411 hasConcept C153294291 @default.
- W4311597411 hasConcept C161067210 @default.
- W4311597411 hasConcept C185544564 @default.
- W4311597411 hasConcept C199360897 @default.
- W4311597411 hasConcept C205649164 @default.
- W4311597411 hasConcept C2778863792 @default.
- W4311597411 hasConcept C2780551164 @default.
- W4311597411 hasConcept C39432304 @default.
- W4311597411 hasConcept C41008148 @default.
- W4311597411 hasConcept C47737302 @default.
- W4311597411 hasConcept C49204034 @default.
- W4311597411 hasConcept C62520636 @default.
- W4311597411 hasConcept C76155785 @default.
- W4311597411 hasConcept C91586092 @default.
- W4311597411 hasConceptScore W4311597411C111368507 @default.
- W4311597411 hasConceptScore W4311597411C114466953 @default.
- W4311597411 hasConceptScore W4311597411C119666444 @default.
- W4311597411 hasConceptScore W4311597411C121332964 @default.
- W4311597411 hasConceptScore W4311597411C126042441 @default.
- W4311597411 hasConceptScore W4311597411C127313418 @default.
- W4311597411 hasConceptScore W4311597411C133204551 @default.
- W4311597411 hasConceptScore W4311597411C153294291 @default.
- W4311597411 hasConceptScore W4311597411C161067210 @default.
- W4311597411 hasConceptScore W4311597411C185544564 @default.
- W4311597411 hasConceptScore W4311597411C199360897 @default.
- W4311597411 hasConceptScore W4311597411C205649164 @default.
- W4311597411 hasConceptScore W4311597411C2778863792 @default.
- W4311597411 hasConceptScore W4311597411C2780551164 @default.
- W4311597411 hasConceptScore W4311597411C39432304 @default.
- W4311597411 hasConceptScore W4311597411C41008148 @default.
- W4311597411 hasConceptScore W4311597411C47737302 @default.
- W4311597411 hasConceptScore W4311597411C49204034 @default.
- W4311597411 hasConceptScore W4311597411C62520636 @default.
- W4311597411 hasConceptScore W4311597411C76155785 @default.
- W4311597411 hasConceptScore W4311597411C91586092 @default.
- W4311597411 hasLocation W43115974111 @default.
- W4311597411 hasOpenAccess W4311597411 @default.
- W4311597411 hasPrimaryLocation W43115974111 @default.
- W4311597411 hasRelatedWork W2018410291 @default.
- W4311597411 hasRelatedWork W2033913685 @default.
- W4311597411 hasRelatedWork W2096827583 @default.
- W4311597411 hasRelatedWork W2379363175 @default.
- W4311597411 hasRelatedWork W2396336865 @default.
- W4311597411 hasRelatedWork W2557934921 @default.
- W4311597411 hasRelatedWork W2582181437 @default.
- W4311597411 hasRelatedWork W3133613695 @default.
- W4311597411 hasRelatedWork W3164135407 @default.
- W4311597411 hasRelatedWork W4224223762 @default.
- W4311597411 isParatext "false" @default.
- W4311597411 isRetracted "false" @default.
- W4311597411 workType "peer-review" @default.