Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311606927> ?p ?o ?g. }
- W4311606927 endingPage "e0278542" @default.
- W4311606927 startingPage "e0278542" @default.
- W4311606927 abstract "Background Colorectal and gastric cancer are major causes of cancer-related deaths. In Korea, gastrointestinal (GI) endoscopic biopsy specimens account for a high percentage of histopathologic examinations. Lack of a sufficient pathologist workforce can cause an increase in human errors, threatening patient safety. Therefore, we developed a digital pathology total solution combining artificial intelligence (AI) classifier models and pathology laboratory information system for GI endoscopic biopsy specimens to establish a post-analytic daily fast quality control (QC) system, which was applied in clinical practice for a 3-month trial run by four pathologists. Methods and findings Our whole slide image (WSI) classification framework comprised patch-generator, patch-level classifier, and WSI-level classifier. The classifiers were both based on DenseNet (Dense Convolutional Network). In laboratory tests, the WSI classifier achieved accuracy rates of 95.8% and 96.0% in classifying histopathological WSIs of colorectal and gastric endoscopic biopsy specimens, respectively, into three classes (Negative for dysplasia, Dysplasia, and Malignant). Classification by pathologic diagnosis and AI prediction were compared and daily reviews were conducted, focusing on discordant cases for early detection of potential human errors by the pathologists, allowing immediate correction, before the pathology report error is conveyed to the patients. During the 3-month AI-assisted daily QC trial run period, approximately 7–10 times the number of slides compared to that in the conventional monthly QC (33 months) were reviewed by pathologists; nearly 100% of GI endoscopy biopsy slides were double-checked by the AI models. Further, approximately 17–30 times the number of potential human errors were detected within an average of 1.2 days. Conclusions The AI-assisted daily QC system that we developed and established demonstrated notable improvements in QC, in quantitative, qualitative, and time utility aspects. Ultimately, we developed an independent AI-assisted post-analytic daily fast QC system that was clinically applicable and influential, which could enhance patient safety." @default.
- W4311606927 created "2022-12-27" @default.
- W4311606927 creator A5004501926 @default.
- W4311606927 creator A5011284336 @default.
- W4311606927 creator A5011453973 @default.
- W4311606927 creator A5011559932 @default.
- W4311606927 creator A5018489413 @default.
- W4311606927 creator A5020340282 @default.
- W4311606927 creator A5048304683 @default.
- W4311606927 creator A5059988029 @default.
- W4311606927 creator A5073286978 @default.
- W4311606927 creator A5088156206 @default.
- W4311606927 creator A5088560297 @default.
- W4311606927 creator A5091623479 @default.
- W4311606927 date "2022-12-15" @default.
- W4311606927 modified "2023-10-14" @default.
- W4311606927 title "Improving quality control in the routine practice for histopathological interpretation of gastrointestinal endoscopic biopsies using artificial intelligence" @default.
- W4311606927 cites W1486120130 @default.
- W4311606927 cites W1884191083 @default.
- W4311606927 cites W191166703 @default.
- W4311606927 cites W1966284753 @default.
- W4311606927 cites W1977653087 @default.
- W4311606927 cites W1996325055 @default.
- W4311606927 cites W2098282217 @default.
- W4311606927 cites W2108417285 @default.
- W4311606927 cites W2111560591 @default.
- W4311606927 cites W2120552981 @default.
- W4311606927 cites W2129439022 @default.
- W4311606927 cites W2151018136 @default.
- W4311606927 cites W2151439603 @default.
- W4311606927 cites W2160912795 @default.
- W4311606927 cites W2314316912 @default.
- W4311606927 cites W2398883174 @default.
- W4311606927 cites W2401520370 @default.
- W4311606927 cites W2618530766 @default.
- W4311606927 cites W2750023899 @default.
- W4311606927 cites W2769999077 @default.
- W4311606927 cites W2806070179 @default.
- W4311606927 cites W2939957413 @default.
- W4311606927 cites W2947825023 @default.
- W4311606927 cites W2948387191 @default.
- W4311606927 cites W2963258365 @default.
- W4311606927 cites W2963366775 @default.
- W4311606927 cites W2966884791 @default.
- W4311606927 cites W2971376088 @default.
- W4311606927 cites W2971742068 @default.
- W4311606927 cites W2996301227 @default.
- W4311606927 cites W3004016611 @default.
- W4311606927 cites W3004374095 @default.
- W4311606927 cites W3005650655 @default.
- W4311606927 cites W3007464329 @default.
- W4311606927 cites W3008902695 @default.
- W4311606927 cites W3015357052 @default.
- W4311606927 cites W3042405885 @default.
- W4311606927 cites W3081006013 @default.
- W4311606927 cites W3082154143 @default.
- W4311606927 cites W3091964463 @default.
- W4311606927 cites W3098164696 @default.
- W4311606927 cites W3105771333 @default.
- W4311606927 cites W3108327761 @default.
- W4311606927 cites W3119005666 @default.
- W4311606927 cites W3124150981 @default.
- W4311606927 cites W3128646645 @default.
- W4311606927 cites W3137724390 @default.
- W4311606927 cites W3172675935 @default.
- W4311606927 cites W3176446229 @default.
- W4311606927 cites W3204013916 @default.
- W4311606927 cites W3205626500 @default.
- W4311606927 cites W4210314683 @default.
- W4311606927 cites W4231510711 @default.
- W4311606927 cites W4246882799 @default.
- W4311606927 cites W4287102660 @default.
- W4311606927 cites W639708223 @default.
- W4311606927 doi "https://doi.org/10.1371/journal.pone.0278542" @default.
- W4311606927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36520777" @default.
- W4311606927 hasPublicationYear "2022" @default.
- W4311606927 type Work @default.
- W4311606927 citedByCount "1" @default.
- W4311606927 countsByYear W43116069272023 @default.
- W4311606927 crossrefType "journal-article" @default.
- W4311606927 hasAuthorship W4311606927A5004501926 @default.
- W4311606927 hasAuthorship W4311606927A5011284336 @default.
- W4311606927 hasAuthorship W4311606927A5011453973 @default.
- W4311606927 hasAuthorship W4311606927A5011559932 @default.
- W4311606927 hasAuthorship W4311606927A5018489413 @default.
- W4311606927 hasAuthorship W4311606927A5020340282 @default.
- W4311606927 hasAuthorship W4311606927A5048304683 @default.
- W4311606927 hasAuthorship W4311606927A5059988029 @default.
- W4311606927 hasAuthorship W4311606927A5073286978 @default.
- W4311606927 hasAuthorship W4311606927A5088156206 @default.
- W4311606927 hasAuthorship W4311606927A5088560297 @default.
- W4311606927 hasAuthorship W4311606927A5091623479 @default.
- W4311606927 hasBestOaLocation W43116069271 @default.
- W4311606927 hasConcept C121608353 @default.
- W4311606927 hasConcept C126322002 @default.
- W4311606927 hasConcept C126838900 @default.
- W4311606927 hasConcept C127413603 @default.
- W4311606927 hasConcept C142724271 @default.