Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311642254> ?p ?o ?g. }
- W4311642254 endingPage "8784" @default.
- W4311642254 startingPage "8765" @default.
- W4311642254 abstract "Abstract. Transferability of knowledge from well-investigated areas to a new study region is gaining importance in landslide hazard research. Considering the time-consuming compilation of landslide inventories as a prerequisite for landslide susceptibility mapping, model transferability can be key to making hazard-related information available to stakeholders in a timely manner. In this paper, we compare and combine two important transfer-learning strategies for landslide susceptibility modeling: case-based reasoning (CBR) and domain adaptation (DA). Care-based reasoning gathers knowledge from previous similar situations (source areas) and applies it to solve a new problem (target area). Domain adaptation, which is widely used in computer vision, selects data from a source area that has a similar distribution to the target area. We assess the performances of single- and multiple-source CBR, DA, and CBR–DA strategies to train and combine landslide susceptibility models using generalized additive models (GAMs) for 10 study areas with various resolutions (1, 10, and 25 m) located in Austria, Ecuador, and Italy. The performance evaluation shows that CBR and combined CBR–DA based on our proposed similarity criterion were able to achieve performances comparable to benchmark models trained in the target area itself. Particularly the CBR strategies yielded favorable results in both single- and multi-source strategies. Although DA tended to have overall lower performances than CBR, it had promising results in scenarios where the source–target similarity was low. We recommend that future transfer-learning research for landslide susceptibility modeling can build on the similarity criterion we used, as it successfully helped to transfer landslide susceptibility models by identifying suitable source regions for model training." @default.
- W4311642254 created "2022-12-27" @default.
- W4311642254 creator A5019118021 @default.
- W4311642254 creator A5059326963 @default.
- W4311642254 creator A5073437026 @default.
- W4311642254 date "2022-12-06" @default.
- W4311642254 modified "2023-10-05" @default.
- W4311642254 title "Transfer learning for landslide susceptibility modeling using domain adaptation and case-based reasoning" @default.
- W4311642254 cites W1180376999 @default.
- W4311642254 cites W1594039573 @default.
- W4311642254 cites W1963641474 @default.
- W4311642254 cites W1963779977 @default.
- W4311642254 cites W1982696459 @default.
- W4311642254 cites W1985449802 @default.
- W4311642254 cites W1994454004 @default.
- W4311642254 cites W2017920701 @default.
- W4311642254 cites W2023793021 @default.
- W4311642254 cites W2034368206 @default.
- W4311642254 cites W2050599078 @default.
- W4311642254 cites W2052115534 @default.
- W4311642254 cites W2063987149 @default.
- W4311642254 cites W2064447488 @default.
- W4311642254 cites W2096943734 @default.
- W4311642254 cites W2100560952 @default.
- W4311642254 cites W2104094955 @default.
- W4311642254 cites W2108156084 @default.
- W4311642254 cites W2114688767 @default.
- W4311642254 cites W2138421509 @default.
- W4311642254 cites W2156182980 @default.
- W4311642254 cites W2165698076 @default.
- W4311642254 cites W2213761457 @default.
- W4311642254 cites W2334989302 @default.
- W4311642254 cites W2336640763 @default.
- W4311642254 cites W2498119267 @default.
- W4311642254 cites W2507736375 @default.
- W4311642254 cites W2604400741 @default.
- W4311642254 cites W2755962456 @default.
- W4311642254 cites W2786808285 @default.
- W4311642254 cites W2789533119 @default.
- W4311642254 cites W2789555074 @default.
- W4311642254 cites W2792546905 @default.
- W4311642254 cites W2793831793 @default.
- W4311642254 cites W2799777740 @default.
- W4311642254 cites W2810807595 @default.
- W4311642254 cites W2889489537 @default.
- W4311642254 cites W2890252336 @default.
- W4311642254 cites W2893209138 @default.
- W4311642254 cites W2934708281 @default.
- W4311642254 cites W2989851051 @default.
- W4311642254 cites W2997942134 @default.
- W4311642254 cites W3006583570 @default.
- W4311642254 cites W3008537971 @default.
- W4311642254 cites W3009123880 @default.
- W4311642254 cites W3011692993 @default.
- W4311642254 cites W3021240791 @default.
- W4311642254 cites W3022961499 @default.
- W4311642254 cites W3032913569 @default.
- W4311642254 cites W3033118603 @default.
- W4311642254 cites W3037975905 @default.
- W4311642254 cites W3038206524 @default.
- W4311642254 cites W3039883906 @default.
- W4311642254 cites W3132552479 @default.
- W4311642254 cites W3167268177 @default.
- W4311642254 cites W3180404590 @default.
- W4311642254 cites W3183934280 @default.
- W4311642254 cites W3192089932 @default.
- W4311642254 cites W3194088617 @default.
- W4311642254 cites W3197716635 @default.
- W4311642254 cites W3197719671 @default.
- W4311642254 cites W3198722775 @default.
- W4311642254 cites W4211056572 @default.
- W4311642254 cites W4220998343 @default.
- W4311642254 cites W4280651099 @default.
- W4311642254 cites W4285679287 @default.
- W4311642254 cites W4293228022 @default.
- W4311642254 cites W4298870098 @default.
- W4311642254 doi "https://doi.org/10.5194/gmd-15-8765-2022" @default.
- W4311642254 hasPublicationYear "2022" @default.
- W4311642254 type Work @default.
- W4311642254 citedByCount "3" @default.
- W4311642254 countsByYear W43116422542023 @default.
- W4311642254 crossrefType "journal-article" @default.
- W4311642254 hasAuthorship W4311642254A5019118021 @default.
- W4311642254 hasAuthorship W4311642254A5059326963 @default.
- W4311642254 hasAuthorship W4311642254A5073437026 @default.
- W4311642254 hasBestOaLocation W43116422541 @default.
- W4311642254 hasConcept C103278499 @default.
- W4311642254 hasConcept C115961682 @default.
- W4311642254 hasConcept C119857082 @default.
- W4311642254 hasConcept C120665830 @default.
- W4311642254 hasConcept C121332964 @default.
- W4311642254 hasConcept C124101348 @default.
- W4311642254 hasConcept C127413603 @default.
- W4311642254 hasConcept C134306372 @default.
- W4311642254 hasConcept C138885662 @default.
- W4311642254 hasConcept C139807058 @default.
- W4311642254 hasConcept C140331021 @default.
- W4311642254 hasConcept C150899416 @default.