Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311650984> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4311650984 endingPage "100582" @default.
- W4311650984 startingPage "100582" @default.
- W4311650984 abstract "The main aim of our proposed work is to segment and classify blood cells using K means algorithm, and also with the help of image processing techniques. A complete blood cell count is very important in the medical analysis for evaluating the total health condition of the body. In the olden days, the blood cells are counted manually with the help of a hem cytometer with other lab equipment and certain chemicals. This technique both time-consuming and challenging. Deep Learning (DL) is an artificial intelligence subset of machine learning that can examine unsupervised information. RBC, or red blood cells, are red cells that are numerous in the blood and are noted for their dark red colour. White blood cells, commonly known as leukocytes, protect the body from infection. Processing tools like MATLAB is used to find the variations in area, perimeter and statistical parameters like mean and standard deviation that separates white blood cells from other blood components. Because of its high accuracy, Enhanced CNN can be used in this study for the categorization and recognition of normal and abnormal blood cell images. Average accuracy of 95% and average precision 0f 0.93 which is higher than existing CNN." @default.
- W4311650984 created "2022-12-27" @default.
- W4311650984 creator A5008247888 @default.
- W4311650984 creator A5046816583 @default.
- W4311650984 creator A5065765556 @default.
- W4311650984 creator A5077698193 @default.
- W4311650984 date "2022-12-01" @default.
- W4311650984 modified "2023-09-25" @default.
- W4311650984 title "Deep learning approach for segmentation and classification of blood cells using enhanced CNN" @default.
- W4311650984 cites W2605579287 @default.
- W4311650984 cites W2750239898 @default.
- W4311650984 cites W3010540599 @default.
- W4311650984 cites W3092605947 @default.
- W4311650984 cites W3098468639 @default.
- W4311650984 doi "https://doi.org/10.1016/j.measen.2022.100582" @default.
- W4311650984 hasPublicationYear "2022" @default.
- W4311650984 type Work @default.
- W4311650984 citedByCount "2" @default.
- W4311650984 countsByYear W43116509842023 @default.
- W4311650984 crossrefType "journal-article" @default.
- W4311650984 hasAuthorship W4311650984A5008247888 @default.
- W4311650984 hasAuthorship W4311650984A5046816583 @default.
- W4311650984 hasAuthorship W4311650984A5065765556 @default.
- W4311650984 hasAuthorship W4311650984A5077698193 @default.
- W4311650984 hasConcept C108583219 @default.
- W4311650984 hasConcept C119857082 @default.
- W4311650984 hasConcept C153180895 @default.
- W4311650984 hasConcept C154945302 @default.
- W4311650984 hasConcept C203014093 @default.
- W4311650984 hasConcept C2778488018 @default.
- W4311650984 hasConcept C2779979121 @default.
- W4311650984 hasConcept C41008148 @default.
- W4311650984 hasConcept C71924100 @default.
- W4311650984 hasConcept C89600930 @default.
- W4311650984 hasConcept C94124525 @default.
- W4311650984 hasConceptScore W4311650984C108583219 @default.
- W4311650984 hasConceptScore W4311650984C119857082 @default.
- W4311650984 hasConceptScore W4311650984C153180895 @default.
- W4311650984 hasConceptScore W4311650984C154945302 @default.
- W4311650984 hasConceptScore W4311650984C203014093 @default.
- W4311650984 hasConceptScore W4311650984C2778488018 @default.
- W4311650984 hasConceptScore W4311650984C2779979121 @default.
- W4311650984 hasConceptScore W4311650984C41008148 @default.
- W4311650984 hasConceptScore W4311650984C71924100 @default.
- W4311650984 hasConceptScore W4311650984C89600930 @default.
- W4311650984 hasConceptScore W4311650984C94124525 @default.
- W4311650984 hasLocation W43116509841 @default.
- W4311650984 hasOpenAccess W4311650984 @default.
- W4311650984 hasPrimaryLocation W43116509841 @default.
- W4311650984 hasRelatedWork W2790662084 @default.
- W4311650984 hasRelatedWork W3014300295 @default.
- W4311650984 hasRelatedWork W3164822677 @default.
- W4311650984 hasRelatedWork W4223943233 @default.
- W4311650984 hasRelatedWork W4225161397 @default.
- W4311650984 hasRelatedWork W4312200629 @default.
- W4311650984 hasRelatedWork W4360585206 @default.
- W4311650984 hasRelatedWork W4364306694 @default.
- W4311650984 hasRelatedWork W4380075502 @default.
- W4311650984 hasRelatedWork W4380086463 @default.
- W4311650984 hasVolume "24" @default.
- W4311650984 isParatext "false" @default.
- W4311650984 isRetracted "false" @default.
- W4311650984 workType "article" @default.