Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311662907> ?p ?o ?g. }
- W4311662907 abstract "Abstract Background As omics measurements profiled on different molecular layers are interconnected, integrative approaches that incorporate the regulatory effect from multi-level omics data are needed. When the multi-level omics data are from the same individuals, gene expression (GE) clusters can be identified using information from regulators like genetic variants and DNA methylation. When the multi-level omics data are from different individuals, the choice of integration approaches is limited. Methods We developed an approach to improve GE clustering from microarray data by integrating regulatory data from different but partially overlapping sets of individuals. We achieve this through (1) decomposing gene expression into the regulated component and the other component that is not regulated by measured factors, (2) optimizing the clustering goodness-of-fit objective function. We do not require the availability of different omics measurements on all individuals. A certain amount of individual overlap between GE data and the regulatory data is adequate for modeling the regulation, thus improving GE clustering. Results A simulation study shows that the performance of the proposed approach depends on the strength of the GE-regulator relationship, degree of missingness, data dimensionality, sample size, and the number of clusters. Across the various simulation settings, the proposed method shows competitive performance in terms of accuracy compared to the alternative K-means clustering method, especially when the clustering structure is due mostly to the regulated component, rather than the unregulated component. We further validate the approach with an application to 8,902 Framingham Heart Study participants with data on up to 17,873 genes and regulation information of DNA methylation and genotype from different but partially overlapping sets of participants. We identify clustering structures of genes associated with pulmonary function while incorporating the predicted regulation effect from the measured regulators. We further investigate the over-representation of these GE clusters in pathways of other diseases that may be related to lung function and respiratory health. Conclusion We propose a novel approach for clustering GE with the assistance of regulatory data that allowed for different but partially overlapping sets of individuals to be included in different omics data." @default.
- W4311662907 created "2022-12-27" @default.
- W4311662907 creator A5037568088 @default.
- W4311662907 creator A5045425123 @default.
- W4311662907 creator A5051097194 @default.
- W4311662907 creator A5053091216 @default.
- W4311662907 creator A5059122240 @default.
- W4311662907 date "2022-12-10" @default.
- W4311662907 modified "2023-10-14" @default.
- W4311662907 title "Assisted clustering of gene expression data using regulatory data from partially overlapping sets of individuals" @default.
- W4311662907 cites W1493454437 @default.
- W4311662907 cites W1984183317 @default.
- W4311662907 cites W1990517717 @default.
- W4311662907 cites W1996881001 @default.
- W4311662907 cites W2034096305 @default.
- W4311662907 cites W2085126855 @default.
- W4311662907 cites W2116404829 @default.
- W4311662907 cites W2140736261 @default.
- W4311662907 cites W2141012957 @default.
- W4311662907 cites W2148860875 @default.
- W4311662907 cites W2150926065 @default.
- W4311662907 cites W2167850131 @default.
- W4311662907 cites W2170989872 @default.
- W4311662907 cites W2171304795 @default.
- W4311662907 cites W2209106767 @default.
- W4311662907 cites W2291051013 @default.
- W4311662907 cites W2559479590 @default.
- W4311662907 cites W2746864531 @default.
- W4311662907 cites W2915194834 @default.
- W4311662907 cites W2950985874 @default.
- W4311662907 cites W2953367677 @default.
- W4311662907 cites W3037029383 @default.
- W4311662907 cites W4230167402 @default.
- W4311662907 cites W65738273 @default.
- W4311662907 doi "https://doi.org/10.1186/s12864-022-09026-1" @default.
- W4311662907 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36496393" @default.
- W4311662907 hasPublicationYear "2022" @default.
- W4311662907 type Work @default.
- W4311662907 citedByCount "0" @default.
- W4311662907 crossrefType "journal-article" @default.
- W4311662907 hasAuthorship W4311662907A5037568088 @default.
- W4311662907 hasAuthorship W4311662907A5045425123 @default.
- W4311662907 hasAuthorship W4311662907A5051097194 @default.
- W4311662907 hasAuthorship W4311662907A5053091216 @default.
- W4311662907 hasAuthorship W4311662907A5059122240 @default.
- W4311662907 hasBestOaLocation W43116629071 @default.
- W4311662907 hasConcept C104317684 @default.
- W4311662907 hasConcept C111815664 @default.
- W4311662907 hasConcept C11783203 @default.
- W4311662907 hasConcept C119857082 @default.
- W4311662907 hasConcept C121332964 @default.
- W4311662907 hasConcept C124101348 @default.
- W4311662907 hasConcept C142724271 @default.
- W4311662907 hasConcept C150194340 @default.
- W4311662907 hasConcept C154945302 @default.
- W4311662907 hasConcept C168167062 @default.
- W4311662907 hasConcept C184509293 @default.
- W4311662907 hasConcept C27438332 @default.
- W4311662907 hasConcept C2779134260 @default.
- W4311662907 hasConcept C41008148 @default.
- W4311662907 hasConcept C54355233 @default.
- W4311662907 hasConcept C60644358 @default.
- W4311662907 hasConcept C67339327 @default.
- W4311662907 hasConcept C70721500 @default.
- W4311662907 hasConcept C71924100 @default.
- W4311662907 hasConcept C73555534 @default.
- W4311662907 hasConcept C86803240 @default.
- W4311662907 hasConcept C95371953 @default.
- W4311662907 hasConcept C97355855 @default.
- W4311662907 hasConceptScore W4311662907C104317684 @default.
- W4311662907 hasConceptScore W4311662907C111815664 @default.
- W4311662907 hasConceptScore W4311662907C11783203 @default.
- W4311662907 hasConceptScore W4311662907C119857082 @default.
- W4311662907 hasConceptScore W4311662907C121332964 @default.
- W4311662907 hasConceptScore W4311662907C124101348 @default.
- W4311662907 hasConceptScore W4311662907C142724271 @default.
- W4311662907 hasConceptScore W4311662907C150194340 @default.
- W4311662907 hasConceptScore W4311662907C154945302 @default.
- W4311662907 hasConceptScore W4311662907C168167062 @default.
- W4311662907 hasConceptScore W4311662907C184509293 @default.
- W4311662907 hasConceptScore W4311662907C27438332 @default.
- W4311662907 hasConceptScore W4311662907C2779134260 @default.
- W4311662907 hasConceptScore W4311662907C41008148 @default.
- W4311662907 hasConceptScore W4311662907C54355233 @default.
- W4311662907 hasConceptScore W4311662907C60644358 @default.
- W4311662907 hasConceptScore W4311662907C67339327 @default.
- W4311662907 hasConceptScore W4311662907C70721500 @default.
- W4311662907 hasConceptScore W4311662907C71924100 @default.
- W4311662907 hasConceptScore W4311662907C73555534 @default.
- W4311662907 hasConceptScore W4311662907C86803240 @default.
- W4311662907 hasConceptScore W4311662907C95371953 @default.
- W4311662907 hasConceptScore W4311662907C97355855 @default.
- W4311662907 hasFunder F4320338421 @default.
- W4311662907 hasIssue "1" @default.
- W4311662907 hasLocation W43116629071 @default.
- W4311662907 hasLocation W43116629072 @default.
- W4311662907 hasLocation W43116629073 @default.
- W4311662907 hasOpenAccess W4311662907 @default.
- W4311662907 hasPrimaryLocation W43116629071 @default.
- W4311662907 hasRelatedWork W1509595664 @default.