Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311680072> ?p ?o ?g. }
- W4311680072 abstract "Abstract Rheumatoid arthritis is an autoimmune condition that predominantly affects the synovial joints, causing joint destruction, pain, and disability. Historically, the standard for measuring the long-term efficacy of disease-modifying antirheumatic drugs has been the assessment of plain radiographs with scoring techniques that quantify joint damage. However, with significant improvements in therapy, current radiographic scoring systems may no longer be fit for purpose for the milder spectrum of disease seen today. We argue that artificial intelligence is an apt solution to further improve upon radiographic scoring, as it can readily learn to recognize subtle patterns in imaging data to not only improve efficiency, but can also increase the sensitivity to variation in mild disease. Current work in the area demonstrates the feasibility of automating scoring but is yet to take full advantage of the strengths of artificial intelligence. By fully leveraging the power of artificial intelligence, faster and more sensitive scoring could enable the ongoing development of effective treatments for patients with rheumatoid arthritis." @default.
- W4311680072 created "2022-12-28" @default.
- W4311680072 creator A5006578391 @default.
- W4311680072 creator A5007799291 @default.
- W4311680072 creator A5015986936 @default.
- W4311680072 creator A5019189705 @default.
- W4311680072 creator A5042922993 @default.
- W4311680072 creator A5052926396 @default.
- W4311680072 creator A5069715336 @default.
- W4311680072 creator A5076515394 @default.
- W4311680072 creator A5087398493 @default.
- W4311680072 date "2022-12-12" @default.
- W4311680072 modified "2023-10-06" @default.
- W4311680072 title "Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: a viewpoint" @default.
- W4311680072 cites W1832497157 @default.
- W4311680072 cites W1976795389 @default.
- W4311680072 cites W1991579003 @default.
- W4311680072 cites W1999506970 @default.
- W4311680072 cites W2037874703 @default.
- W4311680072 cites W2046447616 @default.
- W4311680072 cites W2050119389 @default.
- W4311680072 cites W2065344034 @default.
- W4311680072 cites W2066243006 @default.
- W4311680072 cites W2074438676 @default.
- W4311680072 cites W2084503031 @default.
- W4311680072 cites W2088158803 @default.
- W4311680072 cites W2096965824 @default.
- W4311680072 cites W2106989209 @default.
- W4311680072 cites W2110173475 @default.
- W4311680072 cites W2129757581 @default.
- W4311680072 cites W2132079297 @default.
- W4311680072 cites W2132608084 @default.
- W4311680072 cites W2147246605 @default.
- W4311680072 cites W2206746226 @default.
- W4311680072 cites W2428819958 @default.
- W4311680072 cites W2611902073 @default.
- W4311680072 cites W2769449074 @default.
- W4311680072 cites W2772765836 @default.
- W4311680072 cites W2811374795 @default.
- W4311680072 cites W2891378911 @default.
- W4311680072 cites W2895590824 @default.
- W4311680072 cites W2909558783 @default.
- W4311680072 cites W2913863405 @default.
- W4311680072 cites W2921861522 @default.
- W4311680072 cites W2932474592 @default.
- W4311680072 cites W2934399013 @default.
- W4311680072 cites W2968893881 @default.
- W4311680072 cites W2990678557 @default.
- W4311680072 cites W2994958466 @default.
- W4311680072 cites W3003804480 @default.
- W4311680072 cites W3011721937 @default.
- W4311680072 cites W3020992444 @default.
- W4311680072 cites W3042594052 @default.
- W4311680072 cites W3079771014 @default.
- W4311680072 cites W3104496769 @default.
- W4311680072 cites W3109025045 @default.
- W4311680072 cites W3118615836 @default.
- W4311680072 cites W3152044313 @default.
- W4311680072 cites W3173393692 @default.
- W4311680072 cites W3180959755 @default.
- W4311680072 cites W3214854162 @default.
- W4311680072 cites W4249063051 @default.
- W4311680072 cites W4286008658 @default.
- W4311680072 doi "https://doi.org/10.1186/s13075-022-02972-x" @default.
- W4311680072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36510330" @default.
- W4311680072 hasPublicationYear "2022" @default.
- W4311680072 type Work @default.
- W4311680072 citedByCount "5" @default.
- W4311680072 countsByYear W43116800722023 @default.
- W4311680072 crossrefType "journal-article" @default.
- W4311680072 hasAuthorship W4311680072A5006578391 @default.
- W4311680072 hasAuthorship W4311680072A5007799291 @default.
- W4311680072 hasAuthorship W4311680072A5015986936 @default.
- W4311680072 hasAuthorship W4311680072A5019189705 @default.
- W4311680072 hasAuthorship W4311680072A5042922993 @default.
- W4311680072 hasAuthorship W4311680072A5052926396 @default.
- W4311680072 hasAuthorship W4311680072A5069715336 @default.
- W4311680072 hasAuthorship W4311680072A5076515394 @default.
- W4311680072 hasAuthorship W4311680072A5087398493 @default.
- W4311680072 hasBestOaLocation W43116800721 @default.
- W4311680072 hasConcept C126322002 @default.
- W4311680072 hasConcept C126838900 @default.
- W4311680072 hasConcept C127413603 @default.
- W4311680072 hasConcept C154945302 @default.
- W4311680072 hasConcept C170154142 @default.
- W4311680072 hasConcept C18555067 @default.
- W4311680072 hasConcept C1862650 @default.
- W4311680072 hasConcept C19527891 @default.
- W4311680072 hasConcept C198451711 @default.
- W4311680072 hasConcept C2777077863 @default.
- W4311680072 hasConcept C2777575956 @default.
- W4311680072 hasConcept C2779134260 @default.
- W4311680072 hasConcept C36454342 @default.
- W4311680072 hasConcept C41008148 @default.
- W4311680072 hasConcept C71924100 @default.
- W4311680072 hasConceptScore W4311680072C126322002 @default.
- W4311680072 hasConceptScore W4311680072C126838900 @default.
- W4311680072 hasConceptScore W4311680072C127413603 @default.
- W4311680072 hasConceptScore W4311680072C154945302 @default.
- W4311680072 hasConceptScore W4311680072C170154142 @default.