Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311685227> ?p ?o ?g. }
- W4311685227 endingPage "034104" @default.
- W4311685227 startingPage "034104" @default.
- W4311685227 abstract "The first paper of this series [J. Chem. Phys. 158, 034103 (2023)] demonstrated that excess entropy scaling holds for both fine-grained and corresponding coarse-grained (CG) systems. Despite its universality, a more exact determination of the scaling relationship was not possible due to the semi-empirical nature. In this second paper, an analytical excess entropy scaling relation is derived for bottom-up CG systems. At the single-site CG resolution, effective hard sphere systems are constructed that yield near-identical dynamical properties as the target CG systems by taking advantage of how hard sphere dynamics and excess entropy can be analytically expressed in terms of the liquid packing fraction. Inspired by classical equilibrium perturbation theories and recent advances in constructing hard sphere models for predicting activated dynamics of supercooled liquids, we propose a new approach for understanding the diffusion of molecular liquids in the normal regime using hard sphere reference fluids. The proposed fluctuation matching is designed to have the same amplitude of long wavelength density fluctuations (dimensionless compressibility) as the CG system. Utilizing the Enskog theory to derive an expression for hard sphere diffusion coefficients, a bridge between the CG dynamics and excess entropy is then established. The CG diffusion coefficient can be roughly estimated using various equations of the state, and an accurate prediction of accelerated CG dynamics at different temperatures is also possible in advance of running any CG simulation. By introducing another layer of coarsening, these findings provide a more rigorous method to assess excess entropy scaling and understand the accelerated CG dynamics of molecular fluids." @default.
- W4311685227 created "2022-12-28" @default.
- W4311685227 creator A5001612107 @default.
- W4311685227 creator A5045572539 @default.
- W4311685227 creator A5063281985 @default.
- W4311685227 date "2023-01-21" @default.
- W4311685227 modified "2023-09-28" @default.
- W4311685227 title "Understanding dynamics in coarse-grained models. II. Coarse-grained diffusion modeled using hard sphere theory" @default.
- W4311685227 cites W1569985172 @default.
- W4311685227 cites W1625910593 @default.
- W4311685227 cites W1651894557 @default.
- W4311685227 cites W1681493495 @default.
- W4311685227 cites W1758606432 @default.
- W4311685227 cites W1845618662 @default.
- W4311685227 cites W1944176724 @default.
- W4311685227 cites W1965161489 @default.
- W4311685227 cites W1967631095 @default.
- W4311685227 cites W1971813690 @default.
- W4311685227 cites W1973468812 @default.
- W4311685227 cites W1974771740 @default.
- W4311685227 cites W1979853160 @default.
- W4311685227 cites W1981047697 @default.
- W4311685227 cites W1981684477 @default.
- W4311685227 cites W1984304350 @default.
- W4311685227 cites W1985010497 @default.
- W4311685227 cites W1986142711 @default.
- W4311685227 cites W1986356457 @default.
- W4311685227 cites W1987562751 @default.
- W4311685227 cites W1987645640 @default.
- W4311685227 cites W1992470331 @default.
- W4311685227 cites W1994047930 @default.
- W4311685227 cites W1997073285 @default.
- W4311685227 cites W2000772229 @default.
- W4311685227 cites W2004455341 @default.
- W4311685227 cites W2005347566 @default.
- W4311685227 cites W2006755239 @default.
- W4311685227 cites W2007872320 @default.
- W4311685227 cites W2009997795 @default.
- W4311685227 cites W2018192753 @default.
- W4311685227 cites W2020374623 @default.
- W4311685227 cites W2022309251 @default.
- W4311685227 cites W2023394749 @default.
- W4311685227 cites W2024043306 @default.
- W4311685227 cites W2024059115 @default.
- W4311685227 cites W2026737855 @default.
- W4311685227 cites W2027886127 @default.
- W4311685227 cites W2030031827 @default.
- W4311685227 cites W2030711870 @default.
- W4311685227 cites W2032849224 @default.
- W4311685227 cites W2036063874 @default.
- W4311685227 cites W2037782625 @default.
- W4311685227 cites W2039631289 @default.
- W4311685227 cites W2043244472 @default.
- W4311685227 cites W2044021790 @default.
- W4311685227 cites W2045278568 @default.
- W4311685227 cites W2047733492 @default.
- W4311685227 cites W2048754774 @default.
- W4311685227 cites W2049485940 @default.
- W4311685227 cites W2049792815 @default.
- W4311685227 cites W2051697220 @default.
- W4311685227 cites W2052537108 @default.
- W4311685227 cites W2052678309 @default.
- W4311685227 cites W2057203414 @default.
- W4311685227 cites W2059571618 @default.
- W4311685227 cites W2060174126 @default.
- W4311685227 cites W2061308254 @default.
- W4311685227 cites W2062291586 @default.
- W4311685227 cites W2062389381 @default.
- W4311685227 cites W2062691155 @default.
- W4311685227 cites W2063019793 @default.
- W4311685227 cites W2063721692 @default.
- W4311685227 cites W2065148800 @default.
- W4311685227 cites W2065351060 @default.
- W4311685227 cites W2066005503 @default.
- W4311685227 cites W2066992219 @default.
- W4311685227 cites W2069085854 @default.
- W4311685227 cites W2073726738 @default.
- W4311685227 cites W2077067709 @default.
- W4311685227 cites W2079064201 @default.
- W4311685227 cites W2082131458 @default.
- W4311685227 cites W2082710031 @default.
- W4311685227 cites W2083590256 @default.
- W4311685227 cites W2083990481 @default.
- W4311685227 cites W2084333107 @default.
- W4311685227 cites W2086317837 @default.
- W4311685227 cites W2087242668 @default.
- W4311685227 cites W2088781397 @default.
- W4311685227 cites W2090913292 @default.
- W4311685227 cites W2091545064 @default.
- W4311685227 cites W2091979701 @default.
- W4311685227 cites W2095530874 @default.
- W4311685227 cites W2098338793 @default.
- W4311685227 cites W2108102848 @default.
- W4311685227 cites W2108538165 @default.
- W4311685227 cites W2124138287 @default.
- W4311685227 cites W2131866773 @default.
- W4311685227 cites W2137352412 @default.
- W4311685227 cites W2146871205 @default.