Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311686811> ?p ?o ?g. }
- W4311686811 endingPage "123134" @default.
- W4311686811 startingPage "123134" @default.
- W4311686811 abstract "A data-driven sparse identification method is developed to discover the underlying governing equations from noisy measurement data through the minimization of Multi-Step-Accumulation (MSA) in error. The method focuses on the multi-step model, while conventional sparse regression methods, such as the Sparse Identification of Nonlinear Dynamics method (SINDy), are one-step models. We adopt sparse representation and assume that the underlying equations involve only a small number of functions among possible candidates in a library. The new development in MSA is to use a multi-step model, i.e., predictions from an approximate evolution scheme based on initial points. Accordingly, the loss function comprises the total error at all time steps between the measured series and predicted series with the same initial point. This enables MSA to capture the dynamics directly from the noisy measurements, resisting the corruption of noise. By use of several numerical examples, we demonstrate the robustness and accuracy of the proposed MSA method, including a two-dimensional chaotic map, the logistic map, a two-dimensional damped oscillator, the Lorenz system, and a reduced order model of a self-sustaining process in turbulent shear flows. We also perform further studies under challenging conditions, such as noisy measurements, missing data, and large time step sizes. Furthermore, in order to resolve the difficulty of the nonlinear optimization, we suggest an adaptive training strategy, namely, by gradually increasing the length of time series for training. Higher prediction accuracy is achieved in an illustrative example of the chaotic map by the adaptive strategy." @default.
- W4311686811 created "2022-12-28" @default.
- W4311686811 creator A5038179929 @default.
- W4311686811 creator A5047378068 @default.
- W4311686811 creator A5077023925 @default.
- W4311686811 date "2022-12-01" @default.
- W4311686811 modified "2023-10-16" @default.
- W4311686811 title "Learning chaotic systems from noisy data via multi-step optimization and adaptive training" @default.
- W4311686811 cites W1969747329 @default.
- W4311686811 cites W2014356541 @default.
- W4311686811 cites W2048951385 @default.
- W4311686811 cites W2066454569 @default.
- W4311686811 cites W2135046866 @default.
- W4311686811 cites W2137258853 @default.
- W4311686811 cites W2239232218 @default.
- W4311686811 cites W2296992688 @default.
- W4311686811 cites W2525748878 @default.
- W4311686811 cites W2730644873 @default.
- W4311686811 cites W2765861397 @default.
- W4311686811 cites W2782714865 @default.
- W4311686811 cites W2899283552 @default.
- W4311686811 cites W2951191580 @default.
- W4311686811 cites W2963739154 @default.
- W4311686811 cites W2969631275 @default.
- W4311686811 cites W2970917037 @default.
- W4311686811 cites W2995408993 @default.
- W4311686811 cites W2997092692 @default.
- W4311686811 cites W3002919193 @default.
- W4311686811 cites W3017817371 @default.
- W4311686811 cites W3028724832 @default.
- W4311686811 cites W3042959663 @default.
- W4311686811 cites W3092157980 @default.
- W4311686811 cites W3104338246 @default.
- W4311686811 cites W3105090572 @default.
- W4311686811 cites W3105919389 @default.
- W4311686811 cites W3118706885 @default.
- W4311686811 cites W3159370531 @default.
- W4311686811 cites W3161402363 @default.
- W4311686811 cites W3212966444 @default.
- W4311686811 cites W4234452799 @default.
- W4311686811 cites W4238160257 @default.
- W4311686811 cites W4246840991 @default.
- W4311686811 cites W4248899652 @default.
- W4311686811 cites W4254218124 @default.
- W4311686811 doi "https://doi.org/10.1063/5.0114542" @default.
- W4311686811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36587345" @default.
- W4311686811 hasPublicationYear "2022" @default.
- W4311686811 type Work @default.
- W4311686811 citedByCount "2" @default.
- W4311686811 countsByYear W43116868112023 @default.
- W4311686811 crossrefType "journal-article" @default.
- W4311686811 hasAuthorship W4311686811A5038179929 @default.
- W4311686811 hasAuthorship W4311686811A5047378068 @default.
- W4311686811 hasAuthorship W4311686811A5077023925 @default.
- W4311686811 hasConcept C104317684 @default.
- W4311686811 hasConcept C11413529 @default.
- W4311686811 hasConcept C115961682 @default.
- W4311686811 hasConcept C119247159 @default.
- W4311686811 hasConcept C119857082 @default.
- W4311686811 hasConcept C121332964 @default.
- W4311686811 hasConcept C126255220 @default.
- W4311686811 hasConcept C143724316 @default.
- W4311686811 hasConcept C147764199 @default.
- W4311686811 hasConcept C151406439 @default.
- W4311686811 hasConcept C151510863 @default.
- W4311686811 hasConcept C151730666 @default.
- W4311686811 hasConcept C154945302 @default.
- W4311686811 hasConcept C158622935 @default.
- W4311686811 hasConcept C185592680 @default.
- W4311686811 hasConcept C199360897 @default.
- W4311686811 hasConcept C2777052490 @default.
- W4311686811 hasConcept C33923547 @default.
- W4311686811 hasConcept C41008148 @default.
- W4311686811 hasConcept C55493867 @default.
- W4311686811 hasConcept C62520636 @default.
- W4311686811 hasConcept C63479239 @default.
- W4311686811 hasConcept C67186912 @default.
- W4311686811 hasConcept C77088390 @default.
- W4311686811 hasConcept C86803240 @default.
- W4311686811 hasConcept C99498987 @default.
- W4311686811 hasConceptScore W4311686811C104317684 @default.
- W4311686811 hasConceptScore W4311686811C11413529 @default.
- W4311686811 hasConceptScore W4311686811C115961682 @default.
- W4311686811 hasConceptScore W4311686811C119247159 @default.
- W4311686811 hasConceptScore W4311686811C119857082 @default.
- W4311686811 hasConceptScore W4311686811C121332964 @default.
- W4311686811 hasConceptScore W4311686811C126255220 @default.
- W4311686811 hasConceptScore W4311686811C143724316 @default.
- W4311686811 hasConceptScore W4311686811C147764199 @default.
- W4311686811 hasConceptScore W4311686811C151406439 @default.
- W4311686811 hasConceptScore W4311686811C151510863 @default.
- W4311686811 hasConceptScore W4311686811C151730666 @default.
- W4311686811 hasConceptScore W4311686811C154945302 @default.
- W4311686811 hasConceptScore W4311686811C158622935 @default.
- W4311686811 hasConceptScore W4311686811C185592680 @default.
- W4311686811 hasConceptScore W4311686811C199360897 @default.
- W4311686811 hasConceptScore W4311686811C2777052490 @default.
- W4311686811 hasConceptScore W4311686811C33923547 @default.