Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311688143> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4311688143 endingPage "12922" @default.
- W4311688143 startingPage "12922" @default.
- W4311688143 abstract "Breast cancer is one of the most common types of cancer among women. Accurate diagnosis at an early stage can reduce the mortality associated with this disease. Governments and health organizations stress the importance of early detection of breast cancer as it is related to an increase in the number of available treatment options and increased survival. Early detection gives patients the best chance of receiving effective treatment. Different types of images and imaging modalities are used in the detection and diagnosis of breast cancer. One of the imaging types is “infrared thermal” breast imaging, where a screening instrument is used to measure the temperature distribution of breast tissue. Although it has not been used often, compared to mammograms, it showed promising results when used for early detection. It also has many advantages as it is non-invasive, safe, painless, and inexpensive. The literature has indicated that the use of thermal images with deep neural networks improves the accuracy of early diagnosis of breast malformation. Therefore, in this paper, we aim to investigate to what extent convolutional neural networks (CNNs) with attention mechanisms (AMs) can provide satisfactory detection results in thermal breast cancer images. We present a model for breast cancer detection based on deep neural networks with AMs using thermal images from the Database for Research Mastology with Infrared Image (DMR-IR). The model will be evaluated in terms of accuracy, sensitivity and specificity, and will be compared against state-of-the-art breast cancer detection methods. The AMs with the CNN model achieved encouraging test accuracy rates of 99.46%, 99.37%, and 99.30% on the breast thermal dataset. The test accuracy of CNNs without AMs was 92.32%, whereas CNNs with AMs achieved an improvement in accuracy of 7%. Moreover, the proposed models outperformed previous models that were reviewed in the literature." @default.
- W4311688143 created "2022-12-28" @default.
- W4311688143 creator A5017888698 @default.
- W4311688143 creator A5070414951 @default.
- W4311688143 date "2022-12-15" @default.
- W4311688143 modified "2023-10-14" @default.
- W4311688143 title "Breast Cancer Detection in Thermography Using Convolutional Neural Networks (CNNs) with Deep Attention Mechanisms" @default.
- W4311688143 cites W142627644 @default.
- W4311688143 cites W2049495692 @default.
- W4311688143 cites W2325015832 @default.
- W4311688143 cites W2745869571 @default.
- W4311688143 cites W2766442486 @default.
- W4311688143 cites W2789244585 @default.
- W4311688143 cites W2791915981 @default.
- W4311688143 cites W2809254203 @default.
- W4311688143 cites W2888804473 @default.
- W4311688143 cites W2910702843 @default.
- W4311688143 cites W2910991339 @default.
- W4311688143 cites W2949971795 @default.
- W4311688143 cites W2958255666 @default.
- W4311688143 cites W2962729168 @default.
- W4311688143 cites W2972214381 @default.
- W4311688143 cites W2989695963 @default.
- W4311688143 cites W2991603289 @default.
- W4311688143 cites W2995329474 @default.
- W4311688143 cites W2996780833 @default.
- W4311688143 cites W2997797021 @default.
- W4311688143 cites W3016625845 @default.
- W4311688143 cites W3022192153 @default.
- W4311688143 cites W3023179483 @default.
- W4311688143 cites W3025558299 @default.
- W4311688143 cites W3027822932 @default.
- W4311688143 cites W3046671740 @default.
- W4311688143 cites W3118860867 @default.
- W4311688143 cites W3139348042 @default.
- W4311688143 cites W3166322331 @default.
- W4311688143 cites W4288947478 @default.
- W4311688143 cites W4294214983 @default.
- W4311688143 doi "https://doi.org/10.3390/app122412922" @default.
- W4311688143 hasPublicationYear "2022" @default.
- W4311688143 type Work @default.
- W4311688143 citedByCount "3" @default.
- W4311688143 countsByYear W43116881432023 @default.
- W4311688143 crossrefType "journal-article" @default.
- W4311688143 hasAuthorship W4311688143A5017888698 @default.
- W4311688143 hasAuthorship W4311688143A5070414951 @default.
- W4311688143 hasBestOaLocation W43116881431 @default.
- W4311688143 hasConcept C120665830 @default.
- W4311688143 hasConcept C121332964 @default.
- W4311688143 hasConcept C121608353 @default.
- W4311688143 hasConcept C126322002 @default.
- W4311688143 hasConcept C126838900 @default.
- W4311688143 hasConcept C154945302 @default.
- W4311688143 hasConcept C158355884 @default.
- W4311688143 hasConcept C2779222261 @default.
- W4311688143 hasConcept C2780472235 @default.
- W4311688143 hasConcept C41008148 @default.
- W4311688143 hasConcept C530470458 @default.
- W4311688143 hasConcept C71924100 @default.
- W4311688143 hasConcept C81363708 @default.
- W4311688143 hasConceptScore W4311688143C120665830 @default.
- W4311688143 hasConceptScore W4311688143C121332964 @default.
- W4311688143 hasConceptScore W4311688143C121608353 @default.
- W4311688143 hasConceptScore W4311688143C126322002 @default.
- W4311688143 hasConceptScore W4311688143C126838900 @default.
- W4311688143 hasConceptScore W4311688143C154945302 @default.
- W4311688143 hasConceptScore W4311688143C158355884 @default.
- W4311688143 hasConceptScore W4311688143C2779222261 @default.
- W4311688143 hasConceptScore W4311688143C2780472235 @default.
- W4311688143 hasConceptScore W4311688143C41008148 @default.
- W4311688143 hasConceptScore W4311688143C530470458 @default.
- W4311688143 hasConceptScore W4311688143C71924100 @default.
- W4311688143 hasConceptScore W4311688143C81363708 @default.
- W4311688143 hasFunder F4320321145 @default.
- W4311688143 hasIssue "24" @default.
- W4311688143 hasLocation W43116881431 @default.
- W4311688143 hasLocation W43116881432 @default.
- W4311688143 hasOpenAccess W4311688143 @default.
- W4311688143 hasPrimaryLocation W43116881431 @default.
- W4311688143 hasRelatedWork W1507145496 @default.
- W4311688143 hasRelatedWork W1986167688 @default.
- W4311688143 hasRelatedWork W2058049101 @default.
- W4311688143 hasRelatedWork W2101553075 @default.
- W4311688143 hasRelatedWork W2400750515 @default.
- W4311688143 hasRelatedWork W2472546785 @default.
- W4311688143 hasRelatedWork W2748952813 @default.
- W4311688143 hasRelatedWork W2765634084 @default.
- W4311688143 hasRelatedWork W2899084033 @default.
- W4311688143 hasRelatedWork W3181746755 @default.
- W4311688143 hasVolume "12" @default.
- W4311688143 isParatext "false" @default.
- W4311688143 isRetracted "false" @default.
- W4311688143 workType "article" @default.