Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311700550> ?p ?o ?g. }
- W4311700550 abstract "Abstract The application of microfluidic techniques in experimental and environmental studies is a rapidly emerging field. Water-in-oil microdroplets can serve readily as controllable micro-vessels for studies that require spatial structure. In many applications, it is useful to monitor cell growth without breaking or disrupting the microdroplets. To this end, optical reporters based on color, fluorescence, or luminescence have been developed. However, optical reporters suffer from limitations when used in microdroplets such as inaccurate readings due to strong background interference or limited sensitivity during early growth stages. In addition, optical detection is typically not amenable to filamentous or biofilm-producing organisms that have significant non-linear changes in opacity and light scattering during growth. To overcome such limitations, we show that volatile methyl halide gases produced by reporter cells expressing a methyl halide transferase (MHT) can serve as an alternative non-optical detection approach suitable for microdroplets. In this study, an MHT-labeled Streptomyces venezuelae reporter strain was constructed and characterized. Protocols were established for the encapsulation and incubation of S. venezuelae in microdroplets. We observed the complete life cycle for S. venezuelae including the vegetative expansion of mycelia, mycelial fragmentation, and late-stage sporulation. Methyl bromide (MeBr) production was detected by gas chromatography-mass spectrometry (GC-MS) from S. venezuelae gas reporters incubated in either liquid suspension or microdroplets and used to quantitatively estimate bacterial density. Overall, using MeBr production as a means of quantifying bacterial growth provided a 100-1000 fold increase in sensitivity over optical or fluorescence measurements of a comparable reporter strain expressing fluorescent proteins. Importance Quantitative measurement of bacterial growth in microdroplets in situ is desirable but challenging. Current optical reporter systems suffer from limitations when applied to filamentous or biofilm-producing organisms. In this study, we demonstrate that volatile methyl halide gas production can serve as a quantitative non-optical growth assay for filamentous bacteria encapsulated in microdroplets. We constructed an S. venezuelae gas reporter strain and observed a complete life cycle for encapsulated S. venezuelae in microdroplets, establishing microdroplets as an alternative growth environment for Streptomyces spp . that can provide spatial structure. We detected MeBr production from both liquid suspension and microdroplets with a 100-1000 fold increase in signal-to-noise ratio compared to optical assays. Importantly, we could reliably detect bacteria with densities down to 10 6 CFU/mL. The combination of quantitative gas reporting and microdroplet systems provides a valuable approach to studying fastidious organisms that require spatial structure such as those found typically in soils. Abstract Figure" @default.
- W4311700550 created "2022-12-28" @default.
- W4311700550 creator A5001128282 @default.
- W4311700550 creator A5013959491 @default.
- W4311700550 creator A5035500068 @default.
- W4311700550 creator A5035985551 @default.
- W4311700550 creator A5049255954 @default.
- W4311700550 date "2022-12-06" @default.
- W4311700550 modified "2023-10-16" @default.
- W4311700550 title "Methyl Halide Transferase-Based Gas Reporters for Quantification of Filamentous Bacteria in Microdroplet Emulsions" @default.
- W4311700550 cites W1727138331 @default.
- W4311700550 cites W1959447435 @default.
- W4311700550 cites W1989311624 @default.
- W4311700550 cites W1991394741 @default.
- W4311700550 cites W1997224924 @default.
- W4311700550 cites W1997431966 @default.
- W4311700550 cites W1997478924 @default.
- W4311700550 cites W2015554529 @default.
- W4311700550 cites W2029886517 @default.
- W4311700550 cites W2036289648 @default.
- W4311700550 cites W2046364391 @default.
- W4311700550 cites W2046745766 @default.
- W4311700550 cites W2057960301 @default.
- W4311700550 cites W2074472034 @default.
- W4311700550 cites W2074943127 @default.
- W4311700550 cites W2081852135 @default.
- W4311700550 cites W2094506363 @default.
- W4311700550 cites W2112743201 @default.
- W4311700550 cites W2117363410 @default.
- W4311700550 cites W2127681878 @default.
- W4311700550 cites W2132831494 @default.
- W4311700550 cites W2137790941 @default.
- W4311700550 cites W2143177819 @default.
- W4311700550 cites W2143999758 @default.
- W4311700550 cites W2144217762 @default.
- W4311700550 cites W2152413278 @default.
- W4311700550 cites W2164606163 @default.
- W4311700550 cites W2166755215 @default.
- W4311700550 cites W2170329503 @default.
- W4311700550 cites W2171085168 @default.
- W4311700550 cites W2290768068 @default.
- W4311700550 cites W2330690409 @default.
- W4311700550 cites W2397457481 @default.
- W4311700550 cites W2471350617 @default.
- W4311700550 cites W2515393591 @default.
- W4311700550 cites W2522498265 @default.
- W4311700550 cites W2548144690 @default.
- W4311700550 cites W2555293666 @default.
- W4311700550 cites W2584612163 @default.
- W4311700550 cites W2592565341 @default.
- W4311700550 cites W2593835589 @default.
- W4311700550 cites W2616082873 @default.
- W4311700550 cites W2704007322 @default.
- W4311700550 cites W2756397756 @default.
- W4311700550 cites W2771040183 @default.
- W4311700550 cites W2784453803 @default.
- W4311700550 cites W2803077443 @default.
- W4311700550 cites W2806996953 @default.
- W4311700550 cites W2811468445 @default.
- W4311700550 cites W2889046528 @default.
- W4311700550 cites W2896838666 @default.
- W4311700550 cites W2945890079 @default.
- W4311700550 cites W2949167114 @default.
- W4311700550 cites W2991249548 @default.
- W4311700550 cites W3012826299 @default.
- W4311700550 cites W3018076926 @default.
- W4311700550 cites W4200074239 @default.
- W4311700550 cites W4200625369 @default.
- W4311700550 cites W4205230255 @default.
- W4311700550 cites W4211156702 @default.
- W4311700550 cites W4224240962 @default.
- W4311700550 cites W4250122045 @default.
- W4311700550 doi "https://doi.org/10.1101/2022.12.05.519239" @default.
- W4311700550 hasPublicationYear "2022" @default.
- W4311700550 type Work @default.
- W4311700550 citedByCount "0" @default.
- W4311700550 crossrefType "posted-content" @default.
- W4311700550 hasAuthorship W4311700550A5001128282 @default.
- W4311700550 hasAuthorship W4311700550A5013959491 @default.
- W4311700550 hasAuthorship W4311700550A5035500068 @default.
- W4311700550 hasAuthorship W4311700550A5035985551 @default.
- W4311700550 hasAuthorship W4311700550A5049255954 @default.
- W4311700550 hasBestOaLocation W43117005501 @default.
- W4311700550 hasConcept C120665830 @default.
- W4311700550 hasConcept C121332964 @default.
- W4311700550 hasConcept C171560689 @default.
- W4311700550 hasConcept C178790620 @default.
- W4311700550 hasConcept C185592680 @default.
- W4311700550 hasConcept C43617362 @default.
- W4311700550 hasConcept C91881484 @default.
- W4311700550 hasConceptScore W4311700550C120665830 @default.
- W4311700550 hasConceptScore W4311700550C121332964 @default.
- W4311700550 hasConceptScore W4311700550C171560689 @default.
- W4311700550 hasConceptScore W4311700550C178790620 @default.
- W4311700550 hasConceptScore W4311700550C185592680 @default.
- W4311700550 hasConceptScore W4311700550C43617362 @default.
- W4311700550 hasConceptScore W4311700550C91881484 @default.
- W4311700550 hasLocation W43117005501 @default.
- W4311700550 hasOpenAccess W4311700550 @default.
- W4311700550 hasPrimaryLocation W43117005501 @default.