Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311700818> ?p ?o ?g. }
- W4311700818 endingPage "116094" @default.
- W4311700818 startingPage "116094" @default.
- W4311700818 abstract "The calcium alginate (CA) hydrogels of the raw and reinforced with cellulose nanocrystals (CNC) were synthesized using the ion-exchange method. FT-IR, FESEM, EDX, XRD, and TGA were used to characterize the samples. Swelling as a crucial property of hydrogels was investigated. CNCs-reinforced hydrogels (CA/CNC) with a higher swelling ratio were selected for the subsequent tests. The results of the effect of independent variables, including concentrations of sodium alginate, calcium chloride, and CNC on CA/CNC swelling were analyzed using response surface method based on central composite design (RSM-CCD) and compared with the artificial neural network-salp swarm algorithm (ANN-SSA) hybrid. ANN-SSA codes were developed using the Python programming language. The best optimal topology for the ANN was 3:7:1, and the trained ANN-SSA was converted to matrix form to have a predictive equation based on the weights and biases. The validation of the models was performed using the correlation coefficient (R2), root mean square error (RMSE), and normal standard deviation (Δq (%)). The results of R2, RMSE, and Δq (%) for ANN-SSA are 1.000, 2.657, and 0.095, respectively, and for RSM are 0.984, 202.598, and 7.384, respectively, confirming that ANN-SSA was more precise than RSM." @default.
- W4311700818 created "2022-12-28" @default.
- W4311700818 creator A5002790324 @default.
- W4311700818 creator A5066898791 @default.
- W4311700818 creator A5076910119 @default.
- W4311700818 date "2023-02-01" @default.
- W4311700818 modified "2023-09-30" @default.
- W4311700818 title "Swelling prediction of calcium alginate/cellulose nanocrystal hydrogels using response surface methodology and artificial neural network" @default.
- W4311700818 cites W1040190297 @default.
- W4311700818 cites W1852367705 @default.
- W4311700818 cites W1987144399 @default.
- W4311700818 cites W2005322163 @default.
- W4311700818 cites W2036782843 @default.
- W4311700818 cites W2061241800 @default.
- W4311700818 cites W2078963254 @default.
- W4311700818 cites W2082575730 @default.
- W4311700818 cites W2092866681 @default.
- W4311700818 cites W2269324780 @default.
- W4311700818 cites W2345870418 @default.
- W4311700818 cites W2518124843 @default.
- W4311700818 cites W2606665591 @default.
- W4311700818 cites W2738900493 @default.
- W4311700818 cites W2773056982 @default.
- W4311700818 cites W2791986186 @default.
- W4311700818 cites W2805064951 @default.
- W4311700818 cites W2807876330 @default.
- W4311700818 cites W2809102603 @default.
- W4311700818 cites W2810743723 @default.
- W4311700818 cites W2885802409 @default.
- W4311700818 cites W2888628283 @default.
- W4311700818 cites W2900026399 @default.
- W4311700818 cites W2902061493 @default.
- W4311700818 cites W2909360950 @default.
- W4311700818 cites W2951930467 @default.
- W4311700818 cites W2953411374 @default.
- W4311700818 cites W2962361338 @default.
- W4311700818 cites W2975955694 @default.
- W4311700818 cites W2979538381 @default.
- W4311700818 cites W2981650844 @default.
- W4311700818 cites W2987318248 @default.
- W4311700818 cites W2990231409 @default.
- W4311700818 cites W2999579662 @default.
- W4311700818 cites W3001760768 @default.
- W4311700818 cites W3004180756 @default.
- W4311700818 cites W3009418408 @default.
- W4311700818 cites W3036257562 @default.
- W4311700818 cites W3042045210 @default.
- W4311700818 cites W3083589638 @default.
- W4311700818 cites W3095632424 @default.
- W4311700818 cites W3103338347 @default.
- W4311700818 cites W3128099476 @default.
- W4311700818 cites W3160275210 @default.
- W4311700818 cites W3169008302 @default.
- W4311700818 cites W3174815248 @default.
- W4311700818 cites W3179175769 @default.
- W4311700818 cites W3214463305 @default.
- W4311700818 cites W4200302021 @default.
- W4311700818 cites W4220827961 @default.
- W4311700818 cites W4283723652 @default.
- W4311700818 cites W4285728290 @default.
- W4311700818 cites W4288052788 @default.
- W4311700818 cites W4295678843 @default.
- W4311700818 cites W4310266610 @default.
- W4311700818 doi "https://doi.org/10.1016/j.indcrop.2022.116094" @default.
- W4311700818 hasPublicationYear "2023" @default.
- W4311700818 type Work @default.
- W4311700818 citedByCount "10" @default.
- W4311700818 countsByYear W43117008182023 @default.
- W4311700818 crossrefType "journal-article" @default.
- W4311700818 hasAuthorship W4311700818A5002790324 @default.
- W4311700818 hasAuthorship W4311700818A5066898791 @default.
- W4311700818 hasAuthorship W4311700818A5076910119 @default.
- W4311700818 hasConcept C104779481 @default.
- W4311700818 hasConcept C105795698 @default.
- W4311700818 hasConcept C108586683 @default.
- W4311700818 hasConcept C11413529 @default.
- W4311700818 hasConcept C119857082 @default.
- W4311700818 hasConcept C127413603 @default.
- W4311700818 hasConcept C128990827 @default.
- W4311700818 hasConcept C139945424 @default.
- W4311700818 hasConcept C150077022 @default.
- W4311700818 hasConcept C159985019 @default.
- W4311700818 hasConcept C188027245 @default.
- W4311700818 hasConcept C192562407 @default.
- W4311700818 hasConcept C2778540859 @default.
- W4311700818 hasConcept C2779251873 @default.
- W4311700818 hasConcept C33923547 @default.
- W4311700818 hasConcept C41008148 @default.
- W4311700818 hasConcept C42360764 @default.
- W4311700818 hasConcept C50644808 @default.
- W4311700818 hasConcept C92397422 @default.
- W4311700818 hasConceptScore W4311700818C104779481 @default.
- W4311700818 hasConceptScore W4311700818C105795698 @default.
- W4311700818 hasConceptScore W4311700818C108586683 @default.
- W4311700818 hasConceptScore W4311700818C11413529 @default.
- W4311700818 hasConceptScore W4311700818C119857082 @default.
- W4311700818 hasConceptScore W4311700818C127413603 @default.
- W4311700818 hasConceptScore W4311700818C128990827 @default.