Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311721346> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4311721346 endingPage "1172" @default.
- W4311721346 startingPage "1172" @default.
- W4311721346 abstract "Identifying a notable object and predicting its importance in front of a vehicle are crucial for automated systems’ risk assessment and decision making. However, current research has rarely exploited the driver’s attentional characteristics. In this study, we propose an attention-driven saliency object estimation (SOE) method that uses the attention intensity of the driver as a criterion for determining the salience and importance of objects. First, we design a driver attention prediction (DAP) network with a 2D-3D mixed convolution encoder–decoder structure. Second, we fuse the DAP network with faster R-CNN and YOLOv4 at the feature level and name them SOE-F and SOE-Y, respectively, using a shared-bottom multi-task learning (MTL) architecture. By transferring the spatial features onto the time axis, we are able to eliminate the drawback of the bottom features being extracted repeatedly and achieve a uniform image-video input in SOE-F and SOE-Y. Finally, the parameters in SOE-F and SOE-Y are classified into two categories, domain invariant and domain adaptive, and then the domain-adaptive parameters are trained and optimized. The experimental results on the DADA-2000 dataset demonstrate that the proposed method outperforms the state-of-the-art methods in several evaluation metrics and can more accurately predict driver attention. In addition, driven by a human-like attention mechanism, SOE-F and SOE-Y can identify and detect the salience, category, and location of objects, providing risk assessment and a decision basis for autonomous driving systems." @default.
- W4311721346 created "2022-12-28" @default.
- W4311721346 creator A5027277851 @default.
- W4311721346 creator A5043654176 @default.
- W4311721346 creator A5080253666 @default.
- W4311721346 date "2022-12-07" @default.
- W4311721346 modified "2023-10-14" @default.
- W4311721346 title "Human-like Attention-Driven Saliency Object Estimation in Dynamic Driving Scenes" @default.
- W4311721346 cites W1901129140 @default.
- W4311721346 cites W1934890906 @default.
- W4311721346 cites W2156422946 @default.
- W4311721346 cites W2207629083 @default.
- W4311721346 cites W2565639579 @default.
- W4311721346 cites W2591673470 @default.
- W4311721346 cites W2798441115 @default.
- W4311721346 cites W2809290718 @default.
- W4311721346 cites W2902418641 @default.
- W4311721346 cites W2913340405 @default.
- W4311721346 cites W2947918549 @default.
- W4311721346 cites W2949813473 @default.
- W4311721346 cites W2962965915 @default.
- W4311721346 cites W2963037989 @default.
- W4311721346 cites W2963150697 @default.
- W4311721346 cites W2963503775 @default.
- W4311721346 cites W2963513865 @default.
- W4311721346 cites W2963828885 @default.
- W4311721346 cites W2963857746 @default.
- W4311721346 cites W2964247799 @default.
- W4311721346 cites W2967549667 @default.
- W4311721346 cites W2969741484 @default.
- W4311721346 cites W2990711573 @default.
- W4311721346 cites W3025800305 @default.
- W4311721346 cites W3089943722 @default.
- W4311721346 cites W3097337310 @default.
- W4311721346 cites W3118519864 @default.
- W4311721346 cites W3160173571 @default.
- W4311721346 cites W3176436964 @default.
- W4311721346 cites W4225467065 @default.
- W4311721346 cites W639708223 @default.
- W4311721346 doi "https://doi.org/10.3390/machines10121172" @default.
- W4311721346 hasPublicationYear "2022" @default.
- W4311721346 type Work @default.
- W4311721346 citedByCount "0" @default.
- W4311721346 crossrefType "journal-article" @default.
- W4311721346 hasAuthorship W4311721346A5027277851 @default.
- W4311721346 hasAuthorship W4311721346A5043654176 @default.
- W4311721346 hasAuthorship W4311721346A5080253666 @default.
- W4311721346 hasBestOaLocation W43117213461 @default.
- W4311721346 hasConcept C108154423 @default.
- W4311721346 hasConcept C134306372 @default.
- W4311721346 hasConcept C153180895 @default.
- W4311721346 hasConcept C154945302 @default.
- W4311721346 hasConcept C190470478 @default.
- W4311721346 hasConcept C31972630 @default.
- W4311721346 hasConcept C33923547 @default.
- W4311721346 hasConcept C36503486 @default.
- W4311721346 hasConcept C37914503 @default.
- W4311721346 hasConcept C41008148 @default.
- W4311721346 hasConcept C81363708 @default.
- W4311721346 hasConceptScore W4311721346C108154423 @default.
- W4311721346 hasConceptScore W4311721346C134306372 @default.
- W4311721346 hasConceptScore W4311721346C153180895 @default.
- W4311721346 hasConceptScore W4311721346C154945302 @default.
- W4311721346 hasConceptScore W4311721346C190470478 @default.
- W4311721346 hasConceptScore W4311721346C31972630 @default.
- W4311721346 hasConceptScore W4311721346C33923547 @default.
- W4311721346 hasConceptScore W4311721346C36503486 @default.
- W4311721346 hasConceptScore W4311721346C37914503 @default.
- W4311721346 hasConceptScore W4311721346C41008148 @default.
- W4311721346 hasConceptScore W4311721346C81363708 @default.
- W4311721346 hasFunder F4320321001 @default.
- W4311721346 hasIssue "12" @default.
- W4311721346 hasLocation W43117213461 @default.
- W4311721346 hasOpenAccess W4311721346 @default.
- W4311721346 hasPrimaryLocation W43117213461 @default.
- W4311721346 hasRelatedWork W1891287906 @default.
- W4311721346 hasRelatedWork W2025991752 @default.
- W4311721346 hasRelatedWork W2036807459 @default.
- W4311721346 hasRelatedWork W2533072256 @default.
- W4311721346 hasRelatedWork W2544283655 @default.
- W4311721346 hasRelatedWork W2767651786 @default.
- W4311721346 hasRelatedWork W2775347418 @default.
- W4311721346 hasRelatedWork W2912288872 @default.
- W4311721346 hasRelatedWork W3111677651 @default.
- W4311721346 hasRelatedWork W3181746755 @default.
- W4311721346 hasVolume "10" @default.
- W4311721346 isParatext "false" @default.
- W4311721346 isRetracted "false" @default.
- W4311721346 workType "article" @default.