Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311731846> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4311731846 abstract "Microphone identification based on the intrinsic physical features has received significant attention by the research community in recent years. Such properties can be exploited in security and forensics applications in order to assess the authenticity of a certain audio track or for audio attribution. The detection is possible since the specific characteristics of the microphone components slightly change from one microphone to another due to the manufacturing process. Various techniques have been proposed to implement physical microphone identification from the use of hand-tailored features (e.g., entropy measure) to spectral representation (e.g., cepstral coefficients) in combination with machine learning algorithms. In recent times, the application of deep learning to microphone identification was successfully demonstrated especially in comparison to shallow machine learning algorithms. On the other hand, deep learning requires significant computing resources especially with large data sets, as in the case of audio recordings for microphone identification. Then, dimensionality reduction could benefit the computing time efficiency for this task. The proposed study envisaged the combined use of Convolutional Neural Networks with spectral entropy features extraction to improve time efficiency while preserving a high identification accuracy. Spectral features, based on Shannon entropy and Renyi entropy, are proposed in combination with the ReliefF algorithm to implement a dimensionality reduction of the spectral representation of the audio signals recorded from 34 different microphones. Then, the reduced spectral representation is fed to a custom Convolutional Neural Network to perform the classification. The results show that this approach is able to reduce significantly the processing time in comparison with the state of the art while preserving a comparable identification accuracy and an increased robustness to the presence of noise." @default.
- W4311731846 created "2022-12-28" @default.
- W4311731846 creator A5006463391 @default.
- W4311731846 creator A5030121038 @default.
- W4311731846 date "2022-12-12" @default.
- W4311731846 modified "2023-10-16" @default.
- W4311731846 title "Microphone Identification based on Spectral Entropy with Convolutional Neural Network" @default.
- W4311731846 cites W1485656768 @default.
- W4311731846 cites W1500895378 @default.
- W4311731846 cites W1874399837 @default.
- W4311731846 cites W2049993107 @default.
- W4311731846 cites W2146950091 @default.
- W4311731846 cites W2150689955 @default.
- W4311731846 cites W2154947579 @default.
- W4311731846 cites W2155886813 @default.
- W4311731846 cites W2532423614 @default.
- W4311731846 cites W2606332932 @default.
- W4311731846 cites W2619786436 @default.
- W4311731846 cites W2794045137 @default.
- W4311731846 cites W2895967125 @default.
- W4311731846 cites W2945492101 @default.
- W4311731846 cites W2986157519 @default.
- W4311731846 cites W3009545797 @default.
- W4311731846 cites W3015247149 @default.
- W4311731846 cites W3094992563 @default.
- W4311731846 cites W3155610073 @default.
- W4311731846 cites W4206485556 @default.
- W4311731846 doi "https://doi.org/10.1109/wifs55849.2022.9975406" @default.
- W4311731846 hasPublicationYear "2022" @default.
- W4311731846 type Work @default.
- W4311731846 citedByCount "3" @default.
- W4311731846 countsByYear W43117318462023 @default.
- W4311731846 crossrefType "proceedings-article" @default.
- W4311731846 hasAuthorship W4311731846A5006463391 @default.
- W4311731846 hasAuthorship W4311731846A5030121038 @default.
- W4311731846 hasConcept C106301342 @default.
- W4311731846 hasConcept C108583219 @default.
- W4311731846 hasConcept C111030470 @default.
- W4311731846 hasConcept C119857082 @default.
- W4311731846 hasConcept C121332964 @default.
- W4311731846 hasConcept C151989614 @default.
- W4311731846 hasConcept C153180895 @default.
- W4311731846 hasConcept C154945302 @default.
- W4311731846 hasConcept C2778263558 @default.
- W4311731846 hasConcept C28490314 @default.
- W4311731846 hasConcept C41008148 @default.
- W4311731846 hasConcept C50644808 @default.
- W4311731846 hasConcept C52622490 @default.
- W4311731846 hasConcept C62520636 @default.
- W4311731846 hasConcept C68115822 @default.
- W4311731846 hasConcept C70518039 @default.
- W4311731846 hasConcept C76155785 @default.
- W4311731846 hasConcept C81363708 @default.
- W4311731846 hasConceptScore W4311731846C106301342 @default.
- W4311731846 hasConceptScore W4311731846C108583219 @default.
- W4311731846 hasConceptScore W4311731846C111030470 @default.
- W4311731846 hasConceptScore W4311731846C119857082 @default.
- W4311731846 hasConceptScore W4311731846C121332964 @default.
- W4311731846 hasConceptScore W4311731846C151989614 @default.
- W4311731846 hasConceptScore W4311731846C153180895 @default.
- W4311731846 hasConceptScore W4311731846C154945302 @default.
- W4311731846 hasConceptScore W4311731846C2778263558 @default.
- W4311731846 hasConceptScore W4311731846C28490314 @default.
- W4311731846 hasConceptScore W4311731846C41008148 @default.
- W4311731846 hasConceptScore W4311731846C50644808 @default.
- W4311731846 hasConceptScore W4311731846C52622490 @default.
- W4311731846 hasConceptScore W4311731846C62520636 @default.
- W4311731846 hasConceptScore W4311731846C68115822 @default.
- W4311731846 hasConceptScore W4311731846C70518039 @default.
- W4311731846 hasConceptScore W4311731846C76155785 @default.
- W4311731846 hasConceptScore W4311731846C81363708 @default.
- W4311731846 hasLocation W43117318461 @default.
- W4311731846 hasOpenAccess W4311731846 @default.
- W4311731846 hasPrimaryLocation W43117318461 @default.
- W4311731846 hasRelatedWork W2059299633 @default.
- W4311731846 hasRelatedWork W2279398222 @default.
- W4311731846 hasRelatedWork W2732542196 @default.
- W4311731846 hasRelatedWork W2738221750 @default.
- W4311731846 hasRelatedWork W2773120646 @default.
- W4311731846 hasRelatedWork W2922457425 @default.
- W4311731846 hasRelatedWork W3011074480 @default.
- W4311731846 hasRelatedWork W3211035526 @default.
- W4311731846 hasRelatedWork W4250304930 @default.
- W4311731846 hasRelatedWork W4299822940 @default.
- W4311731846 isParatext "false" @default.
- W4311731846 isRetracted "false" @default.
- W4311731846 workType "article" @default.