Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311735601> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4311735601 endingPage "9" @default.
- W4311735601 startingPage "1" @default.
- W4311735601 abstract "This paper presents the estimation of accuracy in male, female, and transgender identification using different classifiers with the help of voice signals. The recall value of each gender is also calculated. This paper reports the third gender (transgender) identification for the first time. Voice signals are the most appropriate and convenient way to transfer information between the subjects. Voice signal analysis is vital for accurate and fast identification of gender. The Mel Frequency Cepstral Coefficients (MFCCs) are used here as an extracted feature of the voice signals of the speakers. MFCCs are the most convenient and reliable feature that configures the gender identification system. Recurrent Neural Network–Bidirectional Long Short-Term Memory (RNN-BiLSTM), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA) are utilized as classifiers in this work. In the proposed models, the experimental result does not depend on the text of the speech, the language of the speakers, and the time duration of the voice samples. The experimental results are obtained by analyzing the common voice samples. In this article, the RNN-BiLSTM classifier has single-layer architecture, while SVM and LDA have a k-fold value of 5. The recall value of genders and accuracy of the proposed models also varied according to the number of voice samples in training and testing datasets. The highest accuracy for gender identification is found as 94.44%. The simulation results show that the accuracy of the RNN is always found at a higher value than SVM and LDA. The gender-wise highest recall value of the proposed model is 95.63%, 96.71%, and 97.22% for males, females, and transgender, respectively, using voice signals. The recall value of the transgender is high in comparison to other genders." @default.
- W4311735601 created "2022-12-28" @default.
- W4311735601 creator A5051929899 @default.
- W4311735601 creator A5073444895 @default.
- W4311735601 date "2022-12-15" @default.
- W4311735601 modified "2023-09-25" @default.
- W4311735601 title "Estimation of Accuracy in Human Gender Identification and Recall Values Based on Voice Signals Using Different Classifiers" @default.
- W4311735601 cites W2091166243 @default.
- W4311735601 cites W2098193869 @default.
- W4311735601 cites W2105339405 @default.
- W4311735601 cites W2106900543 @default.
- W4311735601 cites W2150769028 @default.
- W4311735601 cites W2226797610 @default.
- W4311735601 cites W2587043449 @default.
- W4311735601 cites W2766605525 @default.
- W4311735601 cites W2787391987 @default.
- W4311735601 cites W2788321923 @default.
- W4311735601 cites W2887907448 @default.
- W4311735601 cites W2892244550 @default.
- W4311735601 cites W2903939003 @default.
- W4311735601 cites W2904301899 @default.
- W4311735601 cites W2919250930 @default.
- W4311735601 cites W2965655638 @default.
- W4311735601 cites W2980121906 @default.
- W4311735601 cites W2983711888 @default.
- W4311735601 cites W2993724474 @default.
- W4311735601 cites W3004904182 @default.
- W4311735601 cites W3006343578 @default.
- W4311735601 cites W3043013312 @default.
- W4311735601 cites W3095410713 @default.
- W4311735601 cites W3120811316 @default.
- W4311735601 cites W3126264772 @default.
- W4311735601 cites W3197964154 @default.
- W4311735601 cites W3198243518 @default.
- W4311735601 cites W4285343246 @default.
- W4311735601 doi "https://doi.org/10.1155/2022/9291099" @default.
- W4311735601 hasPublicationYear "2022" @default.
- W4311735601 type Work @default.
- W4311735601 citedByCount "1" @default.
- W4311735601 countsByYear W43117356012023 @default.
- W4311735601 crossrefType "journal-article" @default.
- W4311735601 hasAuthorship W4311735601A5051929899 @default.
- W4311735601 hasAuthorship W4311735601A5073444895 @default.
- W4311735601 hasBestOaLocation W43117356011 @default.
- W4311735601 hasConcept C100660578 @default.
- W4311735601 hasConcept C116834253 @default.
- W4311735601 hasConcept C12267149 @default.
- W4311735601 hasConcept C151989614 @default.
- W4311735601 hasConcept C153180895 @default.
- W4311735601 hasConcept C154945302 @default.
- W4311735601 hasConcept C15744967 @default.
- W4311735601 hasConcept C180747234 @default.
- W4311735601 hasConcept C28490314 @default.
- W4311735601 hasConcept C41008148 @default.
- W4311735601 hasConcept C52622490 @default.
- W4311735601 hasConcept C59822182 @default.
- W4311735601 hasConcept C69738355 @default.
- W4311735601 hasConcept C81669768 @default.
- W4311735601 hasConcept C86803240 @default.
- W4311735601 hasConcept C95623464 @default.
- W4311735601 hasConceptScore W4311735601C100660578 @default.
- W4311735601 hasConceptScore W4311735601C116834253 @default.
- W4311735601 hasConceptScore W4311735601C12267149 @default.
- W4311735601 hasConceptScore W4311735601C151989614 @default.
- W4311735601 hasConceptScore W4311735601C153180895 @default.
- W4311735601 hasConceptScore W4311735601C154945302 @default.
- W4311735601 hasConceptScore W4311735601C15744967 @default.
- W4311735601 hasConceptScore W4311735601C180747234 @default.
- W4311735601 hasConceptScore W4311735601C28490314 @default.
- W4311735601 hasConceptScore W4311735601C41008148 @default.
- W4311735601 hasConceptScore W4311735601C52622490 @default.
- W4311735601 hasConceptScore W4311735601C59822182 @default.
- W4311735601 hasConceptScore W4311735601C69738355 @default.
- W4311735601 hasConceptScore W4311735601C81669768 @default.
- W4311735601 hasConceptScore W4311735601C86803240 @default.
- W4311735601 hasConceptScore W4311735601C95623464 @default.
- W4311735601 hasLocation W43117356011 @default.
- W4311735601 hasLocation W43117356012 @default.
- W4311735601 hasOpenAccess W4311735601 @default.
- W4311735601 hasPrimaryLocation W43117356011 @default.
- W4311735601 hasRelatedWork W1964761968 @default.
- W4311735601 hasRelatedWork W2022684485 @default.
- W4311735601 hasRelatedWork W2134472250 @default.
- W4311735601 hasRelatedWork W2146076056 @default.
- W4311735601 hasRelatedWork W2296543338 @default.
- W4311735601 hasRelatedWork W2336974148 @default.
- W4311735601 hasRelatedWork W2769275322 @default.
- W4311735601 hasRelatedWork W2811390910 @default.
- W4311735601 hasRelatedWork W3165453100 @default.
- W4311735601 hasRelatedWork W2345184372 @default.
- W4311735601 hasVolume "2022" @default.
- W4311735601 isParatext "false" @default.
- W4311735601 isRetracted "false" @default.
- W4311735601 workType "article" @default.