Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311751503> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4311751503 abstract "Abstract Background Characterization and management of patients with acute coronary syndromes (ACS) remain challenging, and it is unclear whether currently available clinical and procedural features can suffice to inform adequate decision making. Methods Details on patients discharged after an ACS were obtained by querying an extensive multicenter registry, detailing patient features as well as management details. Clinical outcomes included fatal and non-fatal cardiovascular events at 1-year follow-up. After missing data imputation, two unsupervised machine learning approaches (k-means and Clustering Large Applications [CLARA]) were used to generate separate clusters with different features. Bivariate and multivariable-adjusted analyses were performed to compare different clusters for clinical outcomes. Findings: 23,270 patients discharged after ACS were included. Two clusters were identified by k-mean algorithm (k1 and k2), and two clusters by CLARA algorithm (C1 and C2). Differences in 2-years outcomes between k1 and k2 and between C1 and C2 were substantial. K2 cluster (N=21,988) in comparison with k1 cluster (N=1,282) had significantly higher occurrence of death (9.5% vs 3.8%, p<0.001), reinfarction (7.2% vs 3.7%, p<0.001), and major bleeding (6.0% vs 3.0%, p<0.001). Similarly, C1 cluster (N=11,268) showed a worse prognosis than C2 cluster (N=12,002): death (4.8% vs 3.5%, p<0.001), reinfarction (4.5% vs 3.4%, p<0.001), and major bleeding (3.6% vs 2.8%, p=0.001). Most associations did not hold at multivariable analysis based on supervised learning techniques, with the exception of major bleeding (odds ratio=1.37 [95% confidence interval 1.02-1.83] for the k1/C1 subcluster vs k1/C2 subcluster, p=0.039. Conclusions A machine-learning based clustering approach is effective at face value to inform on the prognosis of patients with ACS managed invasively. These findings can be leveraged to inform decision-making in this setting, but also highlight the potential role of cluster analysis in first-in-man, and preapproval studies of medical devices." @default.
- W4311751503 created "2022-12-28" @default.
- W4311751503 creator A5002872853 @default.
- W4311751503 creator A5015687443 @default.
- W4311751503 creator A5024531894 @default.
- W4311751503 creator A5040546862 @default.
- W4311751503 creator A5041760999 @default.
- W4311751503 creator A5055478790 @default.
- W4311751503 creator A5059906206 @default.
- W4311751503 creator A5068015891 @default.
- W4311751503 date "2022-12-14" @default.
- W4311751503 modified "2023-10-16" @default.
- W4311751503 title "56 ANALYSIS OF A 23,270-PATIENT STUDY: UNSUPERVISED MACHINE LEARNING WITH CLUSTER ANALYSIS IN PATIENTS DISCHARGED AFTER AN ACUTE CORONARY SYNDROME" @default.
- W4311751503 doi "https://doi.org/10.1093/eurheartjsupp/suac121.498" @default.
- W4311751503 hasPublicationYear "2022" @default.
- W4311751503 type Work @default.
- W4311751503 citedByCount "0" @default.
- W4311751503 crossrefType "journal-article" @default.
- W4311751503 hasAuthorship W4311751503A5002872853 @default.
- W4311751503 hasAuthorship W4311751503A5015687443 @default.
- W4311751503 hasAuthorship W4311751503A5024531894 @default.
- W4311751503 hasAuthorship W4311751503A5040546862 @default.
- W4311751503 hasAuthorship W4311751503A5041760999 @default.
- W4311751503 hasAuthorship W4311751503A5055478790 @default.
- W4311751503 hasAuthorship W4311751503A5059906206 @default.
- W4311751503 hasAuthorship W4311751503A5068015891 @default.
- W4311751503 hasBestOaLocation W43117515031 @default.
- W4311751503 hasConcept C126322002 @default.
- W4311751503 hasConcept C164705383 @default.
- W4311751503 hasConcept C164866538 @default.
- W4311751503 hasConcept C199360897 @default.
- W4311751503 hasConcept C2777698277 @default.
- W4311751503 hasConcept C38180746 @default.
- W4311751503 hasConcept C41008148 @default.
- W4311751503 hasConcept C500558357 @default.
- W4311751503 hasConcept C71924100 @default.
- W4311751503 hasConceptScore W4311751503C126322002 @default.
- W4311751503 hasConceptScore W4311751503C164705383 @default.
- W4311751503 hasConceptScore W4311751503C164866538 @default.
- W4311751503 hasConceptScore W4311751503C199360897 @default.
- W4311751503 hasConceptScore W4311751503C2777698277 @default.
- W4311751503 hasConceptScore W4311751503C38180746 @default.
- W4311751503 hasConceptScore W4311751503C41008148 @default.
- W4311751503 hasConceptScore W4311751503C500558357 @default.
- W4311751503 hasConceptScore W4311751503C71924100 @default.
- W4311751503 hasIssue "Supplement_K" @default.
- W4311751503 hasLocation W43117515031 @default.
- W4311751503 hasOpenAccess W4311751503 @default.
- W4311751503 hasPrimaryLocation W43117515031 @default.
- W4311751503 hasRelatedWork W2031269965 @default.
- W4311751503 hasRelatedWork W2133964071 @default.
- W4311751503 hasRelatedWork W2187342990 @default.
- W4311751503 hasRelatedWork W2525778866 @default.
- W4311751503 hasRelatedWork W2560790490 @default.
- W4311751503 hasRelatedWork W2596660188 @default.
- W4311751503 hasRelatedWork W2737074397 @default.
- W4311751503 hasRelatedWork W2760815731 @default.
- W4311751503 hasRelatedWork W2761476198 @default.
- W4311751503 hasRelatedWork W3013716928 @default.
- W4311751503 hasVolume "24" @default.
- W4311751503 isParatext "false" @default.
- W4311751503 isRetracted "false" @default.
- W4311751503 workType "article" @default.