Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311752166> ?p ?o ?g. }
- W4311752166 endingPage "110054" @default.
- W4311752166 startingPage "110054" @default.
- W4311752166 abstract "The occurrence of fungi and mycotoxins in foods is a serious global problem. Most of the regulated mycotoxins in food are produced by Fusarium spp. This work aimed to assess the antifungal activity of selected lactic acid bacteria (LAB) strains against the main toxigenic Fusarium spp. isolated from cereals. Various machine learning (ML) algorithms such as neural networks (NN), random forest (RF), extreme gradient boosted trees (XGBoost), and multiple linear regression (MLR), were applied to develop models able to predict the percentage of fungal growth inhibition caused by the LAB strains tested. In addition, the ability of the assayed LAB strains to reduce/inhibit the production of the main mycotoxins associated with these fungi was studied by UPLC-MS/MS. All assays were performed at 20, 25, and 30 °C in dual culture (LAB plus fungus) on MRS agar-cereal-based media. All factors and their interactions very significantly influenced the percentage of growth inhibition compared to controls. The efficacy of LAB strains was higher at 20 °C followed by 30 °C and 25 °C. Overall, the order of susceptibility of the fungi to LAB was F. oxysporum > F. poae = F. culmorum ≥ F. sporotrichioides > F. langsethiae > F. graminearum > F. subglutinans > F. verticillioides. In general, the most effective LAB was Leuconostoc mesenteroides ssp. mesenteroides (T3Y6b), and the least effective were Latilactobacillus sakei ssp. carnosus (T3MM1 and T3Y2). XGBoost and RF were the algorithms that produced the most accurate predicting models of fungal growth inhibition. Mycotoxin levels were usually lower when fungal growth decreased. In the cultures of F. langsethiae treated with LAB, T-2 and HT-2 toxins were not detected except in the treatments with Pediococcus pentosaceus (M9MM5b, S11sMM1, and S1M4). These three strains of P. pentosaceus, L. mesenteroides ssp. mesenteroides (T3Y6b) and L. mesenteroides ssp. dextranicum (T2MM3) inhibited fumonisin production in cultures of F. proliferatum and F. verticillioides. In F. culmorum cultures, zearalenone production was inhibited by all LAB strains, except L. sakei ssp. carnosus (T3MM1) and Companilactobacillus farciminis (T3Y6c), whereas deoxynivalenol and 3-acetyldeoxynivalenol were only detected in cultures of L. sakei ssp. carnosus (T3MM1). The results show that an appropriate selection and use of LAB strains can be one of the most impacting tools in the control of toxigenic Fusarium spp. and their mycotoxins in food and therefore one of the most promising strategies in terms of efficiency, positive impact on the environment, food safety, food security, and international economy." @default.
- W4311752166 created "2022-12-28" @default.
- W4311752166 creator A5021448345 @default.
- W4311752166 creator A5034121124 @default.
- W4311752166 creator A5043046183 @default.
- W4311752166 creator A5049490647 @default.
- W4311752166 date "2023-02-01" @default.
- W4311752166 modified "2023-10-14" @default.
- W4311752166 title "Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins" @default.
- W4311752166 cites W1529211078 @default.
- W4311752166 cites W1591742962 @default.
- W4311752166 cites W1969474890 @default.
- W4311752166 cites W1971236914 @default.
- W4311752166 cites W1979417096 @default.
- W4311752166 cites W1990814303 @default.
- W4311752166 cites W2001790712 @default.
- W4311752166 cites W2017852118 @default.
- W4311752166 cites W2034644852 @default.
- W4311752166 cites W2036048931 @default.
- W4311752166 cites W2039073545 @default.
- W4311752166 cites W2050825391 @default.
- W4311752166 cites W2061028411 @default.
- W4311752166 cites W2062548490 @default.
- W4311752166 cites W2062955400 @default.
- W4311752166 cites W2083792425 @default.
- W4311752166 cites W2084280055 @default.
- W4311752166 cites W2087681105 @default.
- W4311752166 cites W2092310675 @default.
- W4311752166 cites W2118034895 @default.
- W4311752166 cites W2155421219 @default.
- W4311752166 cites W2168423872 @default.
- W4311752166 cites W2345315953 @default.
- W4311752166 cites W2346098852 @default.
- W4311752166 cites W2424385993 @default.
- W4311752166 cites W2464302564 @default.
- W4311752166 cites W2512073946 @default.
- W4311752166 cites W2550688476 @default.
- W4311752166 cites W2561502797 @default.
- W4311752166 cites W2597127080 @default.
- W4311752166 cites W2599636361 @default.
- W4311752166 cites W2605200805 @default.
- W4311752166 cites W2742220175 @default.
- W4311752166 cites W2744045026 @default.
- W4311752166 cites W2752440542 @default.
- W4311752166 cites W2756894814 @default.
- W4311752166 cites W2765439781 @default.
- W4311752166 cites W2767013114 @default.
- W4311752166 cites W2767966695 @default.
- W4311752166 cites W2790621329 @default.
- W4311752166 cites W2791942554 @default.
- W4311752166 cites W2792628642 @default.
- W4311752166 cites W2806031714 @default.
- W4311752166 cites W2884031922 @default.
- W4311752166 cites W2893434625 @default.
- W4311752166 cites W2897149286 @default.
- W4311752166 cites W2912282990 @default.
- W4311752166 cites W2922390929 @default.
- W4311752166 cites W2927168226 @default.
- W4311752166 cites W2938373257 @default.
- W4311752166 cites W2968166339 @default.
- W4311752166 cites W2991583219 @default.
- W4311752166 cites W2998491837 @default.
- W4311752166 cites W2998721135 @default.
- W4311752166 cites W3011088472 @default.
- W4311752166 cites W3014372442 @default.
- W4311752166 cites W3016016792 @default.
- W4311752166 cites W3031866229 @default.
- W4311752166 cites W3033999874 @default.
- W4311752166 cites W3037031830 @default.
- W4311752166 cites W3086202363 @default.
- W4311752166 cites W3090277164 @default.
- W4311752166 cites W3107096519 @default.
- W4311752166 cites W3107433013 @default.
- W4311752166 cites W3107467915 @default.
- W4311752166 cites W3111128169 @default.
- W4311752166 cites W3119680760 @default.
- W4311752166 cites W3133891869 @default.
- W4311752166 cites W3136496047 @default.
- W4311752166 cites W3151105270 @default.
- W4311752166 cites W3160509076 @default.
- W4311752166 cites W3169739890 @default.
- W4311752166 cites W3190469083 @default.
- W4311752166 cites W3200707343 @default.
- W4311752166 cites W3201238311 @default.
- W4311752166 cites W3211815689 @default.
- W4311752166 cites W4200242881 @default.
- W4311752166 cites W4210467738 @default.
- W4311752166 cites W4211089660 @default.
- W4311752166 doi "https://doi.org/10.1016/j.ijfoodmicro.2022.110054" @default.
- W4311752166 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36525768" @default.
- W4311752166 hasPublicationYear "2023" @default.
- W4311752166 type Work @default.
- W4311752166 citedByCount "0" @default.
- W4311752166 crossrefType "journal-article" @default.
- W4311752166 hasAuthorship W4311752166A5021448345 @default.
- W4311752166 hasAuthorship W4311752166A5034121124 @default.
- W4311752166 hasAuthorship W4311752166A5043046183 @default.
- W4311752166 hasAuthorship W4311752166A5049490647 @default.