Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311752822> ?p ?o ?g. }
- W4311752822 endingPage "108173" @default.
- W4311752822 startingPage "108173" @default.
- W4311752822 abstract "Three main challenges in industrial wear detection that limited data-availability and time-consuming annotations, small areas of initial wear, and sensitivity to variable light, have impeded the real-world applications of deep learning-based methods. To this end, we propose RobustFlow, an unsupervised method based on the normalizing flow and attention mechanism. In our work, only the wear-free images are required for training, and then the trained model can be employed to detect and segment wear. Extensive experiments have demonstrated that RobustFlow can achieve predominant robustness in real-world wear detection and segmentation, especially for wear with small regions and variable light. Overall, our work provides a promising paradigm for wear detection and segmentation in real-world industry." @default.
- W4311752822 created "2022-12-28" @default.
- W4311752822 creator A5006168613 @default.
- W4311752822 creator A5011098861 @default.
- W4311752822 creator A5048369492 @default.
- W4311752822 creator A5061082958 @default.
- W4311752822 creator A5068626745 @default.
- W4311752822 creator A5091689476 @default.
- W4311752822 date "2023-01-01" @default.
- W4311752822 modified "2023-10-01" @default.
- W4311752822 title "RobustFlow: An unsupervised paradigm toward real-world wear detection and segmentation with normalizing flow" @default.
- W4311752822 cites W1473764006 @default.
- W4311752822 cites W1969221044 @default.
- W4311752822 cites W2058141886 @default.
- W4311752822 cites W2075691402 @default.
- W4311752822 cites W2122646361 @default.
- W4311752822 cites W2519051404 @default.
- W4311752822 cites W2752782242 @default.
- W4311752822 cites W2771065135 @default.
- W4311752822 cites W2909773576 @default.
- W4311752822 cites W2911424810 @default.
- W4311752822 cites W2940692219 @default.
- W4311752822 cites W2942349194 @default.
- W4311752822 cites W2946681973 @default.
- W4311752822 cites W2946753127 @default.
- W4311752822 cites W2992005611 @default.
- W4311752822 cites W3037565425 @default.
- W4311752822 cites W3046749048 @default.
- W4311752822 cites W3108328895 @default.
- W4311752822 cites W3108914650 @default.
- W4311752822 cites W3129469040 @default.
- W4311752822 cites W3150087071 @default.
- W4311752822 cites W3161063006 @default.
- W4311752822 cites W3162418282 @default.
- W4311752822 cites W3169651898 @default.
- W4311752822 cites W3212044949 @default.
- W4311752822 cites W4200122152 @default.
- W4311752822 cites W4214694907 @default.
- W4311752822 cites W4285728354 @default.
- W4311752822 doi "https://doi.org/10.1016/j.triboint.2022.108173" @default.
- W4311752822 hasPublicationYear "2023" @default.
- W4311752822 type Work @default.
- W4311752822 citedByCount "1" @default.
- W4311752822 countsByYear W43117528222023 @default.
- W4311752822 crossrefType "journal-article" @default.
- W4311752822 hasAuthorship W4311752822A5006168613 @default.
- W4311752822 hasAuthorship W4311752822A5011098861 @default.
- W4311752822 hasAuthorship W4311752822A5048369492 @default.
- W4311752822 hasAuthorship W4311752822A5061082958 @default.
- W4311752822 hasAuthorship W4311752822A5068626745 @default.
- W4311752822 hasAuthorship W4311752822A5091689476 @default.
- W4311752822 hasConcept C104317684 @default.
- W4311752822 hasConcept C127413603 @default.
- W4311752822 hasConcept C134306372 @default.
- W4311752822 hasConcept C13736549 @default.
- W4311752822 hasConcept C153180895 @default.
- W4311752822 hasConcept C154945302 @default.
- W4311752822 hasConcept C182365436 @default.
- W4311752822 hasConcept C185592680 @default.
- W4311752822 hasConcept C2985179714 @default.
- W4311752822 hasConcept C31972630 @default.
- W4311752822 hasConcept C33923547 @default.
- W4311752822 hasConcept C41008148 @default.
- W4311752822 hasConcept C55493867 @default.
- W4311752822 hasConcept C63479239 @default.
- W4311752822 hasConcept C8038995 @default.
- W4311752822 hasConcept C89600930 @default.
- W4311752822 hasConceptScore W4311752822C104317684 @default.
- W4311752822 hasConceptScore W4311752822C127413603 @default.
- W4311752822 hasConceptScore W4311752822C134306372 @default.
- W4311752822 hasConceptScore W4311752822C13736549 @default.
- W4311752822 hasConceptScore W4311752822C153180895 @default.
- W4311752822 hasConceptScore W4311752822C154945302 @default.
- W4311752822 hasConceptScore W4311752822C182365436 @default.
- W4311752822 hasConceptScore W4311752822C185592680 @default.
- W4311752822 hasConceptScore W4311752822C2985179714 @default.
- W4311752822 hasConceptScore W4311752822C31972630 @default.
- W4311752822 hasConceptScore W4311752822C33923547 @default.
- W4311752822 hasConceptScore W4311752822C41008148 @default.
- W4311752822 hasConceptScore W4311752822C55493867 @default.
- W4311752822 hasConceptScore W4311752822C63479239 @default.
- W4311752822 hasConceptScore W4311752822C8038995 @default.
- W4311752822 hasConceptScore W4311752822C89600930 @default.
- W4311752822 hasFunder F4320321001 @default.
- W4311752822 hasFunder F4320324173 @default.
- W4311752822 hasFunder F4320328119 @default.
- W4311752822 hasFunder F4320335787 @default.
- W4311752822 hasLocation W43117528221 @default.
- W4311752822 hasOpenAccess W4311752822 @default.
- W4311752822 hasPrimaryLocation W43117528221 @default.
- W4311752822 hasRelatedWork W1669643531 @default.
- W4311752822 hasRelatedWork W2005437358 @default.
- W4311752822 hasRelatedWork W2008656436 @default.
- W4311752822 hasRelatedWork W2023558673 @default.
- W4311752822 hasRelatedWork W2035976912 @default.
- W4311752822 hasRelatedWork W2039154422 @default.
- W4311752822 hasRelatedWork W2110230079 @default.
- W4311752822 hasRelatedWork W2134924024 @default.