Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311753492> ?p ?o ?g. }
- W4311753492 endingPage "15257" @default.
- W4311753492 startingPage "15244" @default.
- W4311753492 abstract "More efficient, clean, and renewable energy sources must be developed to replace fossil fuels and protect the environment from their harmful effects. Electrochemical energy storage devices and energy conversion (hydrogen production) sources are two effective approaches for replacing fossil fuels. Herein, single metal tungstates, such as MnWO4 flakes, NiWO4 nanoparticles, and CoWO4 nanoparticles, as well as bimetallic tungstates, such as MnNiWO4, MnCoWO4, and NiCoWO4, were synthesized using a simple hydrothermal method. Furthermore, carbon nanofibers (CNFs) were adopted to modify bimetallic tungstate to improve the electron transfer and extraction of electron–hole pairs. To modify the CNFs with bimetallic tungstate as a composite electrode, a simple and convenient process called the wet impregnation method was employed. The resulting composite materials exhibited better performances in supercapacitor and photoelectrochemical water-splitting studies than those of single and bimetallic tungstates. The hybrid composite, MnNiWO4/CNF, showed a high specific capacity of 1374 F g–1 at a current density of 0.5 A g–1 in a three-electrode configuration, owing to its nonfaradaic and faradaic processes. This performance was 4.2, 10.3, and 3 orders of magnitude higher than those of MnWO4, NiWO4, and MnNiWO4 electrodes, respectively. In photoelectrochemical water-splitting studies, the development of heterostructures decreases electron–hole recombination and improves interfacial charge transfer in composite materials. In this study, the MnNiWO4/CNF nanocomposite material exhibited a maximum applied bias photon-to-current efficiency (ABPE) of 3.47%, approximately 6, 6, and 2 orders of magnitude higher than those of bare MnWO4, NiWO4, and MnNiWO4, respectively, under illumination. The crystallinities, morphologies, absorptions, and chemical compositions of the synthesized materials were investigated using electrochemical and spectroscopic techniques. The results indicate that the synthesized hybrid materials could be promising candidates as electrode materials for remarkable supercapacitor and photoelectrochemical water-splitting applications." @default.
- W4311753492 created "2022-12-28" @default.
- W4311753492 creator A5000091474 @default.
- W4311753492 creator A5011829090 @default.
- W4311753492 creator A5054210059 @default.
- W4311753492 creator A5067306788 @default.
- W4311753492 creator A5075850092 @default.
- W4311753492 creator A5082619372 @default.
- W4311753492 creator A5083660000 @default.
- W4311753492 date "2022-12-06" @default.
- W4311753492 modified "2023-10-01" @default.
- W4311753492 title "Facile Synthesis and Characterization of Novel Carbon Nanofiber-Doped MWO<sub>4</sub> (M–Mn, Co, Ni, Mn–Co, Mn–Ni, Ni–Co)-Based Nanostructured Electrode Materials for Application in Electrochemical Supercapacitors and Photoelectrochemical Water Splitting" @default.
- W4311753492 cites W1966989478 @default.
- W4311753492 cites W1968006904 @default.
- W4311753492 cites W1971183883 @default.
- W4311753492 cites W1974632557 @default.
- W4311753492 cites W1996435693 @default.
- W4311753492 cites W2005884494 @default.
- W4311753492 cites W2006932935 @default.
- W4311753492 cites W2007423655 @default.
- W4311753492 cites W2043110722 @default.
- W4311753492 cites W2043886807 @default.
- W4311753492 cites W2081860981 @default.
- W4311753492 cites W2105835428 @default.
- W4311753492 cites W2111437927 @default.
- W4311753492 cites W2122179418 @default.
- W4311753492 cites W2312663747 @default.
- W4311753492 cites W2503428616 @default.
- W4311753492 cites W2508655142 @default.
- W4311753492 cites W2513436506 @default.
- W4311753492 cites W2546495407 @default.
- W4311753492 cites W2547877143 @default.
- W4311753492 cites W2762251908 @default.
- W4311753492 cites W2765159833 @default.
- W4311753492 cites W2765290366 @default.
- W4311753492 cites W2765402814 @default.
- W4311753492 cites W2781122661 @default.
- W4311753492 cites W2791999055 @default.
- W4311753492 cites W2800760331 @default.
- W4311753492 cites W2895725130 @default.
- W4311753492 cites W2921655834 @default.
- W4311753492 cites W2924547074 @default.
- W4311753492 cites W2939020452 @default.
- W4311753492 cites W2962456733 @default.
- W4311753492 cites W2967428290 @default.
- W4311753492 cites W2971775912 @default.
- W4311753492 cites W2981466814 @default.
- W4311753492 cites W2987969960 @default.
- W4311753492 cites W2989955040 @default.
- W4311753492 cites W3014584687 @default.
- W4311753492 cites W3027601852 @default.
- W4311753492 cites W3039840895 @default.
- W4311753492 cites W3047328598 @default.
- W4311753492 cites W3092351316 @default.
- W4311753492 cites W3097470819 @default.
- W4311753492 cites W3121123378 @default.
- W4311753492 cites W3133700927 @default.
- W4311753492 cites W3133724222 @default.
- W4311753492 cites W3136967719 @default.
- W4311753492 cites W3161648284 @default.
- W4311753492 cites W3163936547 @default.
- W4311753492 cites W3171572642 @default.
- W4311753492 cites W3183021579 @default.
- W4311753492 cites W3198859338 @default.
- W4311753492 cites W3200478755 @default.
- W4311753492 cites W3202413961 @default.
- W4311753492 cites W3206597269 @default.
- W4311753492 cites W3216828878 @default.
- W4311753492 cites W4205549933 @default.
- W4311753492 cites W4220960036 @default.
- W4311753492 cites W4224995846 @default.
- W4311753492 cites W4281254201 @default.
- W4311753492 cites W4281492404 @default.
- W4311753492 cites W4282572255 @default.
- W4311753492 cites W4282944492 @default.
- W4311753492 cites W4285110223 @default.
- W4311753492 cites W4293085008 @default.
- W4311753492 cites W4293228574 @default.
- W4311753492 cites W4306881033 @default.
- W4311753492 doi "https://doi.org/10.1021/acs.energyfuels.2c03230" @default.
- W4311753492 hasPublicationYear "2022" @default.
- W4311753492 type Work @default.
- W4311753492 citedByCount "2" @default.
- W4311753492 countsByYear W43117534922023 @default.
- W4311753492 crossrefType "journal-article" @default.
- W4311753492 hasAuthorship W4311753492A5000091474 @default.
- W4311753492 hasAuthorship W4311753492A5011829090 @default.
- W4311753492 hasAuthorship W4311753492A5054210059 @default.
- W4311753492 hasAuthorship W4311753492A5067306788 @default.
- W4311753492 hasAuthorship W4311753492A5075850092 @default.
- W4311753492 hasAuthorship W4311753492A5082619372 @default.
- W4311753492 hasAuthorship W4311753492A5083660000 @default.
- W4311753492 hasConcept C127413603 @default.
- W4311753492 hasConcept C130349721 @default.
- W4311753492 hasConcept C147789679 @default.
- W4311753492 hasConcept C155672457 @default.
- W4311753492 hasConcept C161790260 @default.
- W4311753492 hasConcept C171250308 @default.