Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311756021> ?p ?o ?g. }
- W4311756021 endingPage "105604" @default.
- W4311756021 startingPage "105604" @default.
- W4311756021 abstract "This study aims at developing an empirical, multi-variable tsunami damage model for buildings, based on machine-learning algorithms which leverage about 250.000 ex-post data surveyed by the Japanese Ministry of Land, Infrastructure and Transportation after the 2011 Great East Japan event in the Tōhoku region. By implementing simple geospatial tools, the dataset is integrated with additional explanatory variables, including, among others, factors accounting for the mutual interaction between the inundated structures. Tests on models’ sensitivity to the number and type of input features used for model development reveal the importance, on the predictive performance, of considering usually neglected mechanisms like the shielding effect and the debris impact generation. The analysis for the potential spatial transferability indicates a reduction in the accuracy, thus suggesting a better suitability of empirical models for descriptive purposes, limiting their predictive ability only to region-specific cases." @default.
- W4311756021 created "2022-12-28" @default.
- W4311756021 creator A5002298837 @default.
- W4311756021 creator A5013365345 @default.
- W4311756021 creator A5036680497 @default.
- W4311756021 creator A5059398093 @default.
- W4311756021 date "2023-02-01" @default.
- W4311756021 modified "2023-09-27" @default.
- W4311756021 title "Leveraging data driven approaches for enhanced tsunami damage modelling: Insights from the 2011 Great East Japan event" @default.
- W4311756021 cites W1498436455 @default.
- W4311756021 cites W1678356000 @default.
- W4311756021 cites W1875061881 @default.
- W4311756021 cites W1913739036 @default.
- W4311756021 cites W1930624869 @default.
- W4311756021 cites W1971522860 @default.
- W4311756021 cites W2007117095 @default.
- W4311756021 cites W2007646322 @default.
- W4311756021 cites W2022262754 @default.
- W4311756021 cites W2034274155 @default.
- W4311756021 cites W2042678220 @default.
- W4311756021 cites W2055637875 @default.
- W4311756021 cites W2056132907 @default.
- W4311756021 cites W2072196008 @default.
- W4311756021 cites W2093978413 @default.
- W4311756021 cites W2096567692 @default.
- W4311756021 cites W2128010420 @default.
- W4311756021 cites W2144443458 @default.
- W4311756021 cites W2154378101 @default.
- W4311756021 cites W2155256794 @default.
- W4311756021 cites W2156436688 @default.
- W4311756021 cites W2477443915 @default.
- W4311756021 cites W2516616966 @default.
- W4311756021 cites W2560180542 @default.
- W4311756021 cites W2568167096 @default.
- W4311756021 cites W2639598725 @default.
- W4311756021 cites W2757434569 @default.
- W4311756021 cites W2767265995 @default.
- W4311756021 cites W2797171939 @default.
- W4311756021 cites W2898847074 @default.
- W4311756021 cites W2911964244 @default.
- W4311756021 cites W2929824467 @default.
- W4311756021 cites W2989010806 @default.
- W4311756021 cites W2994277290 @default.
- W4311756021 cites W3023487173 @default.
- W4311756021 cites W3081022264 @default.
- W4311756021 cites W3099878876 @default.
- W4311756021 cites W3129144742 @default.
- W4311756021 cites W3130889722 @default.
- W4311756021 cites W3133102852 @default.
- W4311756021 cites W3157676919 @default.
- W4311756021 cites W4299603229 @default.
- W4311756021 cites W60102541 @default.
- W4311756021 doi "https://doi.org/10.1016/j.envsoft.2022.105604" @default.
- W4311756021 hasPublicationYear "2023" @default.
- W4311756021 type Work @default.
- W4311756021 citedByCount "0" @default.
- W4311756021 crossrefType "journal-article" @default.
- W4311756021 hasAuthorship W4311756021A5002298837 @default.
- W4311756021 hasAuthorship W4311756021A5013365345 @default.
- W4311756021 hasAuthorship W4311756021A5036680497 @default.
- W4311756021 hasAuthorship W4311756021A5059398093 @default.
- W4311756021 hasConcept C119857082 @default.
- W4311756021 hasConcept C121332964 @default.
- W4311756021 hasConcept C124101348 @default.
- W4311756021 hasConcept C138885662 @default.
- W4311756021 hasConcept C140331021 @default.
- W4311756021 hasConcept C153083717 @default.
- W4311756021 hasConcept C205649164 @default.
- W4311756021 hasConcept C2522767166 @default.
- W4311756021 hasConcept C27206212 @default.
- W4311756021 hasConcept C2779662365 @default.
- W4311756021 hasConcept C29825287 @default.
- W4311756021 hasConcept C41008148 @default.
- W4311756021 hasConcept C45804977 @default.
- W4311756021 hasConcept C521751864 @default.
- W4311756021 hasConcept C58640448 @default.
- W4311756021 hasConcept C61272859 @default.
- W4311756021 hasConcept C62520636 @default.
- W4311756021 hasConcept C76155785 @default.
- W4311756021 hasConcept C9770341 @default.
- W4311756021 hasConceptScore W4311756021C119857082 @default.
- W4311756021 hasConceptScore W4311756021C121332964 @default.
- W4311756021 hasConceptScore W4311756021C124101348 @default.
- W4311756021 hasConceptScore W4311756021C138885662 @default.
- W4311756021 hasConceptScore W4311756021C140331021 @default.
- W4311756021 hasConceptScore W4311756021C153083717 @default.
- W4311756021 hasConceptScore W4311756021C205649164 @default.
- W4311756021 hasConceptScore W4311756021C2522767166 @default.
- W4311756021 hasConceptScore W4311756021C27206212 @default.
- W4311756021 hasConceptScore W4311756021C2779662365 @default.
- W4311756021 hasConceptScore W4311756021C29825287 @default.
- W4311756021 hasConceptScore W4311756021C41008148 @default.
- W4311756021 hasConceptScore W4311756021C45804977 @default.
- W4311756021 hasConceptScore W4311756021C521751864 @default.
- W4311756021 hasConceptScore W4311756021C58640448 @default.
- W4311756021 hasConceptScore W4311756021C61272859 @default.
- W4311756021 hasConceptScore W4311756021C62520636 @default.
- W4311756021 hasConceptScore W4311756021C76155785 @default.