Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311756051> ?p ?o ?g. }
- W4311756051 endingPage "128369" @default.
- W4311756051 startingPage "128369" @default.
- W4311756051 abstract "According to excellent performance on forecasting future trends based on historical observations, time series prediction has attracted considerable attention of many researchers. Consumer price index (CPI), as one of the indispensable indicators of macro economy, occupies a significant position in the national economic system. Arguably, the nonlinearity and nonstationarity of CPI series lead to poor accuracy of traditional prediction methods, from which the improvement of prediction performance is perceived as a challenging task. In this paper, a multi-scale forecasting technique for CPI is proposed, which is the hybrid of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), hierarchical agglomerative clustering (HAC), independent component analysis (ICA) and non-linear autoregressive (NAR) neural network. Firstly, the original time series is decomposed into several adaptive modes via the CEEMDAN. Secondly, HAC is introduced to cluster the modes according to their similarity aiming at performing dimensionality reduction. Thirdly, ICA is utilized to separate independent components (ICs) which implies the hidden information of time series. Finally, NAR neural network is applied to the ICs to obtain the forecasting sequences, and the final forecasting result is the combination of these individual forecasts. Comparative experiment results verify the superiority of the proposed hybrid methodology from the aspect of the performance criterion in CPI forecasting." @default.
- W4311756051 created "2022-12-28" @default.
- W4311756051 creator A5048192248 @default.
- W4311756051 creator A5054067811 @default.
- W4311756051 creator A5063168172 @default.
- W4311756051 date "2023-01-01" @default.
- W4311756051 modified "2023-10-01" @default.
- W4311756051 title "A multi-scale forecasting model for CPI based on independent component analysis and non-linear autoregressive neural network" @default.
- W4311756051 cites W1965062021 @default.
- W4311756051 cites W1975783225 @default.
- W4311756051 cites W1994729888 @default.
- W4311756051 cites W1996355918 @default.
- W4311756051 cites W1996697778 @default.
- W4311756051 cites W2002016471 @default.
- W4311756051 cites W2007221293 @default.
- W4311756051 cites W2009931407 @default.
- W4311756051 cites W2014341469 @default.
- W4311756051 cites W2019204254 @default.
- W4311756051 cites W2023840808 @default.
- W4311756051 cites W2039935421 @default.
- W4311756051 cites W2048571575 @default.
- W4311756051 cites W2065466048 @default.
- W4311756051 cites W2080697511 @default.
- W4311756051 cites W2094304287 @default.
- W4311756051 cites W2099741732 @default.
- W4311756051 cites W2106665847 @default.
- W4311756051 cites W2120390927 @default.
- W4311756051 cites W2123649031 @default.
- W4311756051 cites W2125056386 @default.
- W4311756051 cites W2141224535 @default.
- W4311756051 cites W2152254169 @default.
- W4311756051 cites W2153233077 @default.
- W4311756051 cites W2157721241 @default.
- W4311756051 cites W2528237000 @default.
- W4311756051 cites W2612082766 @default.
- W4311756051 cites W2769912520 @default.
- W4311756051 cites W2796531691 @default.
- W4311756051 cites W2798575063 @default.
- W4311756051 cites W2832704815 @default.
- W4311756051 cites W2905238323 @default.
- W4311756051 cites W2907336874 @default.
- W4311756051 cites W2964036159 @default.
- W4311756051 cites W3007534727 @default.
- W4311756051 cites W3042248080 @default.
- W4311756051 cites W3126343197 @default.
- W4311756051 cites W3189302811 @default.
- W4311756051 cites W4237561838 @default.
- W4311756051 doi "https://doi.org/10.1016/j.physa.2022.128369" @default.
- W4311756051 hasPublicationYear "2023" @default.
- W4311756051 type Work @default.
- W4311756051 citedByCount "0" @default.
- W4311756051 crossrefType "journal-article" @default.
- W4311756051 hasAuthorship W4311756051A5048192248 @default.
- W4311756051 hasAuthorship W4311756051A5054067811 @default.
- W4311756051 hasAuthorship W4311756051A5063168172 @default.
- W4311756051 hasConcept C111030470 @default.
- W4311756051 hasConcept C112633086 @default.
- W4311756051 hasConcept C115961682 @default.
- W4311756051 hasConcept C119857082 @default.
- W4311756051 hasConcept C121332964 @default.
- W4311756051 hasConcept C124101348 @default.
- W4311756051 hasConcept C143724316 @default.
- W4311756051 hasConcept C149782125 @default.
- W4311756051 hasConcept C151406439 @default.
- W4311756051 hasConcept C151730666 @default.
- W4311756051 hasConcept C154945302 @default.
- W4311756051 hasConcept C159877910 @default.
- W4311756051 hasConcept C168167062 @default.
- W4311756051 hasConcept C24338571 @default.
- W4311756051 hasConcept C25570617 @default.
- W4311756051 hasConcept C27438332 @default.
- W4311756051 hasConcept C33923547 @default.
- W4311756051 hasConcept C41008148 @default.
- W4311756051 hasConcept C50644808 @default.
- W4311756051 hasConcept C70518039 @default.
- W4311756051 hasConcept C73555534 @default.
- W4311756051 hasConcept C76155785 @default.
- W4311756051 hasConcept C86803240 @default.
- W4311756051 hasConcept C97355855 @default.
- W4311756051 hasConcept C99498987 @default.
- W4311756051 hasConceptScore W4311756051C111030470 @default.
- W4311756051 hasConceptScore W4311756051C112633086 @default.
- W4311756051 hasConceptScore W4311756051C115961682 @default.
- W4311756051 hasConceptScore W4311756051C119857082 @default.
- W4311756051 hasConceptScore W4311756051C121332964 @default.
- W4311756051 hasConceptScore W4311756051C124101348 @default.
- W4311756051 hasConceptScore W4311756051C143724316 @default.
- W4311756051 hasConceptScore W4311756051C149782125 @default.
- W4311756051 hasConceptScore W4311756051C151406439 @default.
- W4311756051 hasConceptScore W4311756051C151730666 @default.
- W4311756051 hasConceptScore W4311756051C154945302 @default.
- W4311756051 hasConceptScore W4311756051C159877910 @default.
- W4311756051 hasConceptScore W4311756051C168167062 @default.
- W4311756051 hasConceptScore W4311756051C24338571 @default.
- W4311756051 hasConceptScore W4311756051C25570617 @default.
- W4311756051 hasConceptScore W4311756051C27438332 @default.
- W4311756051 hasConceptScore W4311756051C33923547 @default.
- W4311756051 hasConceptScore W4311756051C41008148 @default.