Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311756714> ?p ?o ?g. }
- W4311756714 endingPage "110197" @default.
- W4311756714 startingPage "110197" @default.
- W4311756714 abstract "Visual object tracking has achieved remarkable progress in recent years. However, current research in the vision community mainly focuses on tracking of generic objects, while less attention is paid to tracking unmanned aerial vehicle (UAV) especially from a moving platform. In this work, we explore this problem by constructing a UAV to UAV (UAV2UAV) tracking dataset. Specifically, this dataset consists of 44 videos (23k frames). Each video is manually annotated with bounding boxes. To the best of our knowledge, this dataset is the first work dedicated to UAV2UAV tracking. We extensively evaluate 19 state-of-the-art trackers using both hand-crafted feature based and deep-learning based approaches to understand how existing tracking methods perform and to provide a baseline for future works. The evaluation results show that more research works are needed to improve UAV2UAV tracking. In addition, we introduce a novel tracker, which leverages data augmentation technique for UAV tracking to encourage future research. By releasing this dataset, we expect to facilitate future studies and applications of UAV2UAV tracking in both academia and industry communities. Our dataset is available at: https://github.com/hapless19/UAV2UAV-dataset." @default.
- W4311756714 created "2022-12-28" @default.
- W4311756714 creator A5005591242 @default.
- W4311756714 creator A5060353395 @default.
- W4311756714 creator A5061437945 @default.
- W4311756714 creator A5066102428 @default.
- W4311756714 creator A5073528771 @default.
- W4311756714 date "2023-02-01" @default.
- W4311756714 modified "2023-10-11" @default.
- W4311756714 title "A UAV to UAV tracking benchmark" @default.
- W4311756714 cites W1964846093 @default.
- W4311756714 cites W1995903777 @default.
- W4311756714 cites W2044986361 @default.
- W4311756714 cites W2066513826 @default.
- W4311756714 cites W2126302311 @default.
- W4311756714 cites W2154889144 @default.
- W4311756714 cites W2158592639 @default.
- W4311756714 cites W2158827467 @default.
- W4311756714 cites W2163309385 @default.
- W4311756714 cites W2214352687 @default.
- W4311756714 cites W2244252896 @default.
- W4311756714 cites W2408241409 @default.
- W4311756714 cites W2470394683 @default.
- W4311756714 cites W2518876086 @default.
- W4311756714 cites W2520477759 @default.
- W4311756714 cites W2557641257 @default.
- W4311756714 cites W2599547527 @default.
- W4311756714 cites W2605173812 @default.
- W4311756714 cites W2767302379 @default.
- W4311756714 cites W2792121015 @default.
- W4311756714 cites W2794669410 @default.
- W4311756714 cites W2794744029 @default.
- W4311756714 cites W2798842862 @default.
- W4311756714 cites W2891033863 @default.
- W4311756714 cites W2910102176 @default.
- W4311756714 cites W2955747520 @default.
- W4311756714 cites W2963534981 @default.
- W4311756714 cites W2964099559 @default.
- W4311756714 cites W2964111344 @default.
- W4311756714 cites W2991778094 @default.
- W4311756714 cites W2994700216 @default.
- W4311756714 cites W3001584168 @default.
- W4311756714 cites W3004460637 @default.
- W4311756714 cites W3089537495 @default.
- W4311756714 cites W3102624093 @default.
- W4311756714 cites W3178259030 @default.
- W4311756714 doi "https://doi.org/10.1016/j.knosys.2022.110197" @default.
- W4311756714 hasPublicationYear "2023" @default.
- W4311756714 type Work @default.
- W4311756714 citedByCount "0" @default.
- W4311756714 crossrefType "journal-article" @default.
- W4311756714 hasAuthorship W4311756714A5005591242 @default.
- W4311756714 hasAuthorship W4311756714A5060353395 @default.
- W4311756714 hasAuthorship W4311756714A5061437945 @default.
- W4311756714 hasAuthorship W4311756714A5066102428 @default.
- W4311756714 hasAuthorship W4311756714A5073528771 @default.
- W4311756714 hasConcept C108583219 @default.
- W4311756714 hasConcept C111368507 @default.
- W4311756714 hasConcept C115961682 @default.
- W4311756714 hasConcept C119857082 @default.
- W4311756714 hasConcept C12725497 @default.
- W4311756714 hasConcept C127313418 @default.
- W4311756714 hasConcept C13280743 @default.
- W4311756714 hasConcept C138885662 @default.
- W4311756714 hasConcept C147037132 @default.
- W4311756714 hasConcept C154586513 @default.
- W4311756714 hasConcept C154945302 @default.
- W4311756714 hasConcept C157286648 @default.
- W4311756714 hasConcept C15744967 @default.
- W4311756714 hasConcept C185798385 @default.
- W4311756714 hasConcept C19417346 @default.
- W4311756714 hasConcept C202474056 @default.
- W4311756714 hasConcept C205649164 @default.
- W4311756714 hasConcept C2775936607 @default.
- W4311756714 hasConcept C2776401178 @default.
- W4311756714 hasConcept C2781238097 @default.
- W4311756714 hasConcept C31972630 @default.
- W4311756714 hasConcept C41008148 @default.
- W4311756714 hasConcept C41895202 @default.
- W4311756714 hasConcept C56461940 @default.
- W4311756714 hasConcept C57501372 @default.
- W4311756714 hasConcept C63584917 @default.
- W4311756714 hasConceptScore W4311756714C108583219 @default.
- W4311756714 hasConceptScore W4311756714C111368507 @default.
- W4311756714 hasConceptScore W4311756714C115961682 @default.
- W4311756714 hasConceptScore W4311756714C119857082 @default.
- W4311756714 hasConceptScore W4311756714C12725497 @default.
- W4311756714 hasConceptScore W4311756714C127313418 @default.
- W4311756714 hasConceptScore W4311756714C13280743 @default.
- W4311756714 hasConceptScore W4311756714C138885662 @default.
- W4311756714 hasConceptScore W4311756714C147037132 @default.
- W4311756714 hasConceptScore W4311756714C154586513 @default.
- W4311756714 hasConceptScore W4311756714C154945302 @default.
- W4311756714 hasConceptScore W4311756714C157286648 @default.
- W4311756714 hasConceptScore W4311756714C15744967 @default.
- W4311756714 hasConceptScore W4311756714C185798385 @default.
- W4311756714 hasConceptScore W4311756714C19417346 @default.
- W4311756714 hasConceptScore W4311756714C202474056 @default.