Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311760054> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4311760054 abstract "Abstract Background Takotsubo syndrome (TTS) is burdened by a not negligible rate of an impaired short-term prognosis. Current existing models, based on classical statistical methods, showed only moderate accuracy to predict the risk of in-hospital adverse events following admission for TTS. We sought to design a machine-learning (ML) based model to predict the risk of in-hospital death among patients admitted for TTS, and to provide clusters of TTS patients associated with different risks of adverse short-term prognosis. Methods A Penalized Logistic Regression-based ML model for predicting in-hospital death was trained and tested on a cohort of 3482 patients with TTS from the international, multicenter, InterTAK Registry. 33 clinically relevant variables were selected to be included in the prediction model. Model performance was assessed according to area under the receiver operating characteristic curve (AUC). A K-Means clustering algorithm was designed to stratify patients into phenotypic groups based on the most relevant features emerging from the main model. Results The overall incidence of in-hospital death was 5.2%. The InterTAK-ML model showed an AUC of 0.88 (95%CI 0.87-0.90) and 0.87 (95%CI 0.83-0.91) with respect to in-hospital death prediction in the train and test cohorts, respectively. By exploiting the 5 variables showing the highest feature importance (use of catecholamines, type of triggering factor, left ventricular ejection fraction, white blood cell count, heart rate), TTS patients were clustered into five groups associated with different risks of in-hospital death (29.4% vs 3.9% vs 1.6% vs 1.3% vs 0.7%). Conclusion A ML-based approach for the identification of TTS patients at risk of adverse short-term prognosis is feasible and effective. The InterTAK-ML model showed accurate discriminative capability for the prediction of in-hospital death. To support clinical decision-making, TTS patients can be clustered into groups entailing different risks of death based on routinely collected variables." @default.
- W4311760054 created "2022-12-28" @default.
- W4311760054 creator A5001666794 @default.
- W4311760054 creator A5005317664 @default.
- W4311760054 creator A5021498894 @default.
- W4311760054 creator A5031505042 @default.
- W4311760054 creator A5040218329 @default.
- W4311760054 creator A5040546862 @default.
- W4311760054 creator A5043115715 @default.
- W4311760054 creator A5055478790 @default.
- W4311760054 creator A5059906206 @default.
- W4311760054 creator A5075248311 @default.
- W4311760054 creator A5083236244 @default.
- W4311760054 date "2022-12-14" @default.
- W4311760054 modified "2023-09-27" @default.
- W4311760054 title "1149 MACHINE-LEARNING BASED PREDICTION OF IN-HOSPITAL DEATH FOR PATIENTS WITH TAKOTSUBO SYNDROME: THE INTERTAK-ML MODEL" @default.
- W4311760054 doi "https://doi.org/10.1093/eurheartjsupp/suac121.714" @default.
- W4311760054 hasPublicationYear "2022" @default.
- W4311760054 type Work @default.
- W4311760054 citedByCount "0" @default.
- W4311760054 crossrefType "journal-article" @default.
- W4311760054 hasAuthorship W4311760054A5001666794 @default.
- W4311760054 hasAuthorship W4311760054A5005317664 @default.
- W4311760054 hasAuthorship W4311760054A5021498894 @default.
- W4311760054 hasAuthorship W4311760054A5031505042 @default.
- W4311760054 hasAuthorship W4311760054A5040218329 @default.
- W4311760054 hasAuthorship W4311760054A5040546862 @default.
- W4311760054 hasAuthorship W4311760054A5043115715 @default.
- W4311760054 hasAuthorship W4311760054A5055478790 @default.
- W4311760054 hasAuthorship W4311760054A5059906206 @default.
- W4311760054 hasAuthorship W4311760054A5075248311 @default.
- W4311760054 hasAuthorship W4311760054A5083236244 @default.
- W4311760054 hasBestOaLocation W43117600541 @default.
- W4311760054 hasConcept C120665830 @default.
- W4311760054 hasConcept C121332964 @default.
- W4311760054 hasConcept C126322002 @default.
- W4311760054 hasConcept C151956035 @default.
- W4311760054 hasConcept C179755657 @default.
- W4311760054 hasConcept C194828623 @default.
- W4311760054 hasConcept C2778198053 @default.
- W4311760054 hasConcept C2778488018 @default.
- W4311760054 hasConcept C58471807 @default.
- W4311760054 hasConcept C61511704 @default.
- W4311760054 hasConcept C71924100 @default.
- W4311760054 hasConcept C72563966 @default.
- W4311760054 hasConcept C78085059 @default.
- W4311760054 hasConceptScore W4311760054C120665830 @default.
- W4311760054 hasConceptScore W4311760054C121332964 @default.
- W4311760054 hasConceptScore W4311760054C126322002 @default.
- W4311760054 hasConceptScore W4311760054C151956035 @default.
- W4311760054 hasConceptScore W4311760054C179755657 @default.
- W4311760054 hasConceptScore W4311760054C194828623 @default.
- W4311760054 hasConceptScore W4311760054C2778198053 @default.
- W4311760054 hasConceptScore W4311760054C2778488018 @default.
- W4311760054 hasConceptScore W4311760054C58471807 @default.
- W4311760054 hasConceptScore W4311760054C61511704 @default.
- W4311760054 hasConceptScore W4311760054C71924100 @default.
- W4311760054 hasConceptScore W4311760054C72563966 @default.
- W4311760054 hasConceptScore W4311760054C78085059 @default.
- W4311760054 hasIssue "Supplement_K" @default.
- W4311760054 hasLocation W43117600541 @default.
- W4311760054 hasOpenAccess W4311760054 @default.
- W4311760054 hasPrimaryLocation W43117600541 @default.
- W4311760054 hasRelatedWork W2073607259 @default.
- W4311760054 hasRelatedWork W2149280644 @default.
- W4311760054 hasRelatedWork W2510914644 @default.
- W4311760054 hasRelatedWork W3011322738 @default.
- W4311760054 hasRelatedWork W3097975744 @default.
- W4311760054 hasRelatedWork W3190029335 @default.
- W4311760054 hasRelatedWork W3197202809 @default.
- W4311760054 hasRelatedWork W3204711385 @default.
- W4311760054 hasRelatedWork W4285007665 @default.
- W4311760054 hasRelatedWork W4306247841 @default.
- W4311760054 hasVolume "24" @default.
- W4311760054 isParatext "false" @default.
- W4311760054 isRetracted "false" @default.
- W4311760054 workType "article" @default.