Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311761372> ?p ?o ?g. }
- W4311761372 abstract "Multiphase flow in porous media is involved in various natural and industrial applications, including water infiltration into soils, carbon geosequestration, and underground hydrogen storage. Understanding the invasion morphology at the pore scale is critical for better prediction of flow properties at the continuum scale in partially saturated permeable media. The deep learning method, as a promising technique to estimate the flow transport processes in porous media, has gained significant attention. However, existing works have mainly focused on single-phase flow, whereas the capability of data-driven techniques has yet to be applied to the pore-scale modeling of fluid–fluid displacement in porous media. Here, the conditional generative adversarial network is applied for pore-scale modeling of multiphase flow in two-dimensional porous media. The network is trained based on a data set of porous media generated using a particle-deposition method, with the corresponding invasion morphologies after the displacement processes calculated using a recently developed interface tracking algorithm. The results demonstrate the capability of data-driven techniques in predicting both fluid saturation and spatial distribution. It is also shown that the method can be generalized to estimate fluid distribution under different wetting conditions and particle shapes. This work represents the first effort at the application of the deep learning method for pore-scale modeling of immiscible fluid displacement and highlights the strength of data-driven techniques for surrogate modeling of multiphase flow in porous media." @default.
- W4311761372 created "2022-12-28" @default.
- W4311761372 creator A5002881487 @default.
- W4311761372 creator A5019947802 @default.
- W4311761372 creator A5026544164 @default.
- W4311761372 creator A5033093165 @default.
- W4311761372 creator A5068500110 @default.
- W4311761372 creator A5078577855 @default.
- W4311761372 date "2022-12-01" @default.
- W4311761372 modified "2023-10-13" @default.
- W4311761372 title "Pore-scale modeling of multiphase flow in porous media using a conditional generative adversarial network (cGAN)" @default.
- W4311761372 cites W1568906761 @default.
- W4311761372 cites W1637481809 @default.
- W4311761372 cites W1855799034 @default.
- W4311761372 cites W1933948687 @default.
- W4311761372 cites W1964807502 @default.
- W4311761372 cites W1977164599 @default.
- W4311761372 cites W1979909869 @default.
- W4311761372 cites W1981565294 @default.
- W4311761372 cites W1982402391 @default.
- W4311761372 cites W1987098262 @default.
- W4311761372 cites W1999646019 @default.
- W4311761372 cites W2008798992 @default.
- W4311761372 cites W2026632831 @default.
- W4311761372 cites W2027884928 @default.
- W4311761372 cites W2042410044 @default.
- W4311761372 cites W2054950515 @default.
- W4311761372 cites W2077186564 @default.
- W4311761372 cites W2085248918 @default.
- W4311761372 cites W2086019689 @default.
- W4311761372 cites W2136174518 @default.
- W4311761372 cites W2263641133 @default.
- W4311761372 cites W2315841499 @default.
- W4311761372 cites W2512290190 @default.
- W4311761372 cites W2544517960 @default.
- W4311761372 cites W2547973981 @default.
- W4311761372 cites W2565645176 @default.
- W4311761372 cites W2601329158 @default.
- W4311761372 cites W2731597694 @default.
- W4311761372 cites W2735696334 @default.
- W4311761372 cites W2774320778 @default.
- W4311761372 cites W2779447498 @default.
- W4311761372 cites W2792952603 @default.
- W4311761372 cites W2800863426 @default.
- W4311761372 cites W2801938748 @default.
- W4311761372 cites W2888331556 @default.
- W4311761372 cites W2897245131 @default.
- W4311761372 cites W2916032760 @default.
- W4311761372 cites W2930481666 @default.
- W4311761372 cites W2937161046 @default.
- W4311761372 cites W2954332343 @default.
- W4311761372 cites W2963073614 @default.
- W4311761372 cites W2964232757 @default.
- W4311761372 cites W2969597631 @default.
- W4311761372 cites W2975558134 @default.
- W4311761372 cites W2981461641 @default.
- W4311761372 cites W2982353498 @default.
- W4311761372 cites W2982430228 @default.
- W4311761372 cites W3011193154 @default.
- W4311761372 cites W3012007521 @default.
- W4311761372 cites W3014032663 @default.
- W4311761372 cites W3015609216 @default.
- W4311761372 cites W3020934407 @default.
- W4311761372 cites W3021194039 @default.
- W4311761372 cites W3027319999 @default.
- W4311761372 cites W3032752766 @default.
- W4311761372 cites W3035621897 @default.
- W4311761372 cites W3037612050 @default.
- W4311761372 cites W3119536937 @default.
- W4311761372 cites W3120263324 @default.
- W4311761372 cites W3125604020 @default.
- W4311761372 cites W3127003409 @default.
- W4311761372 cites W3137388315 @default.
- W4311761372 cites W3139029066 @default.
- W4311761372 cites W3163834626 @default.
- W4311761372 cites W3165454173 @default.
- W4311761372 cites W3165789468 @default.
- W4311761372 cites W3174177148 @default.
- W4311761372 cites W3179010545 @default.
- W4311761372 cites W3190345339 @default.
- W4311761372 cites W3197308578 @default.
- W4311761372 cites W3205214002 @default.
- W4311761372 cites W4200336498 @default.
- W4311761372 cites W4205864557 @default.
- W4311761372 cites W4214718750 @default.
- W4311761372 cites W4220685980 @default.
- W4311761372 cites W4225399208 @default.
- W4311761372 cites W4293032836 @default.
- W4311761372 doi "https://doi.org/10.1063/5.0133054" @default.
- W4311761372 hasPublicationYear "2022" @default.
- W4311761372 type Work @default.
- W4311761372 citedByCount "4" @default.
- W4311761372 countsByYear W43117613722023 @default.
- W4311761372 crossrefType "journal-article" @default.
- W4311761372 hasAuthorship W4311761372A5002881487 @default.
- W4311761372 hasAuthorship W4311761372A5019947802 @default.
- W4311761372 hasAuthorship W4311761372A5026544164 @default.
- W4311761372 hasAuthorship W4311761372A5033093165 @default.
- W4311761372 hasAuthorship W4311761372A5068500110 @default.
- W4311761372 hasAuthorship W4311761372A5078577855 @default.