Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311761403> ?p ?o ?g. }
- W4311761403 abstract "Nowadays, breast cancer is one of the leading cancers in Vietnam, and it causes approximately 6000 deaths every year. The rate of breast cancer patients was calculated as 26.4/100000 persons in 2018. There are 21,555 new cases reported in 2020. However, these figures can be reduced with early detection and diagnosis of breast cancer disease in women through mammographic imaging. In many hospitals in Vietnam, there is a lack of experienced breast cancer radiologists. Therefore, it is helpful to develop an intelligent system to improve radiologists’ performance in breast cancer screening for Vietnamese patients. Our research aims to develop a convolutional neural network-based system for classifying breast cancer X-Ray images into three classes of BI-RADS categories as BI-RADS 1 (“normal”), BI-RADS 23 (“benign”) and BI-RADS 045 (“incomplete and malignance”). This classification system is developed based on the convolutional neural network with ResNet 50. The system is trained and tested on a breast cancer image dataset of Vietnamese patients containing 7912 images provided by Hanoi Medical University Hospital radiologists. The system accuracy uses the testing set achieved a macAUC (a macro average of the three AUCs) of 0.754. To validate our model, we performed a reader study with the breast cancer radiologists of the Hanoi Medical University Hospital, reading about 500 random images of the test set. We confirmed the efficacy of our model, which achieved performance comparable to a committee of two radiologists when presented with the same data. Additionally, the system takes only 6 seconds to interpret a breast cancer X-Ray image instead of 450 seconds interpreted by a Vietnamese radiologist. Therefore, our system can be considered as a “second radiologist,” which can improve radiologists’ performance in breast cancer screening for Vietnamese patients." @default.
- W4311761403 created "2022-12-28" @default.
- W4311761403 creator A5005629144 @default.
- W4311761403 creator A5008815543 @default.
- W4311761403 creator A5020732490 @default.
- W4311761403 creator A5024929372 @default.
- W4311761403 creator A5032723257 @default.
- W4311761403 creator A5034176862 @default.
- W4311761403 creator A5037584065 @default.
- W4311761403 creator A5037668752 @default.
- W4311761403 creator A5039493214 @default.
- W4311761403 creator A5043935312 @default.
- W4311761403 creator A5052254230 @default.
- W4311761403 creator A5056363593 @default.
- W4311761403 creator A5071289093 @default.
- W4311761403 creator A5074551442 @default.
- W4311761403 creator A5075235849 @default.
- W4311761403 creator A5091333725 @default.
- W4311761403 creator A5091834618 @default.
- W4311761403 date "2022-11-29" @default.
- W4311761403 modified "2023-10-17" @default.
- W4311761403 title "Convolutional Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening for Vietnamese patients" @default.
- W4311761403 cites W1988870621 @default.
- W4311761403 cites W2018509478 @default.
- W4311761403 cites W2043943004 @default.
- W4311761403 cites W2093536466 @default.
- W4311761403 cites W2110069732 @default.
- W4311761403 cites W2113622720 @default.
- W4311761403 cites W2180849428 @default.
- W4311761403 cites W2194775991 @default.
- W4311761403 cites W2540344354 @default.
- W4311761403 cites W2551914088 @default.
- W4311761403 cites W2964304746 @default.
- W4311761403 cites W2980030301 @default.
- W4311761403 cites W3015320572 @default.
- W4311761403 cites W4228996546 @default.
- W4311761403 doi "https://doi.org/10.1080/08839514.2022.2151185" @default.
- W4311761403 hasPublicationYear "2022" @default.
- W4311761403 type Work @default.
- W4311761403 citedByCount "1" @default.
- W4311761403 countsByYear W43117614032023 @default.
- W4311761403 crossrefType "journal-article" @default.
- W4311761403 hasAuthorship W4311761403A5005629144 @default.
- W4311761403 hasAuthorship W4311761403A5008815543 @default.
- W4311761403 hasAuthorship W4311761403A5020732490 @default.
- W4311761403 hasAuthorship W4311761403A5024929372 @default.
- W4311761403 hasAuthorship W4311761403A5032723257 @default.
- W4311761403 hasAuthorship W4311761403A5034176862 @default.
- W4311761403 hasAuthorship W4311761403A5037584065 @default.
- W4311761403 hasAuthorship W4311761403A5037668752 @default.
- W4311761403 hasAuthorship W4311761403A5039493214 @default.
- W4311761403 hasAuthorship W4311761403A5043935312 @default.
- W4311761403 hasAuthorship W4311761403A5052254230 @default.
- W4311761403 hasAuthorship W4311761403A5056363593 @default.
- W4311761403 hasAuthorship W4311761403A5071289093 @default.
- W4311761403 hasAuthorship W4311761403A5074551442 @default.
- W4311761403 hasAuthorship W4311761403A5075235849 @default.
- W4311761403 hasAuthorship W4311761403A5091333725 @default.
- W4311761403 hasAuthorship W4311761403A5091834618 @default.
- W4311761403 hasBestOaLocation W43117614031 @default.
- W4311761403 hasConcept C103621254 @default.
- W4311761403 hasConcept C121608353 @default.
- W4311761403 hasConcept C126322002 @default.
- W4311761403 hasConcept C126838900 @default.
- W4311761403 hasConcept C138885662 @default.
- W4311761403 hasConcept C154945302 @default.
- W4311761403 hasConcept C169903167 @default.
- W4311761403 hasConcept C19527891 @default.
- W4311761403 hasConcept C2777432617 @default.
- W4311761403 hasConcept C2779098232 @default.
- W4311761403 hasConcept C2780472235 @default.
- W4311761403 hasConcept C41008148 @default.
- W4311761403 hasConcept C41895202 @default.
- W4311761403 hasConcept C530470458 @default.
- W4311761403 hasConcept C71924100 @default.
- W4311761403 hasConcept C81363708 @default.
- W4311761403 hasConceptScore W4311761403C103621254 @default.
- W4311761403 hasConceptScore W4311761403C121608353 @default.
- W4311761403 hasConceptScore W4311761403C126322002 @default.
- W4311761403 hasConceptScore W4311761403C126838900 @default.
- W4311761403 hasConceptScore W4311761403C138885662 @default.
- W4311761403 hasConceptScore W4311761403C154945302 @default.
- W4311761403 hasConceptScore W4311761403C169903167 @default.
- W4311761403 hasConceptScore W4311761403C19527891 @default.
- W4311761403 hasConceptScore W4311761403C2777432617 @default.
- W4311761403 hasConceptScore W4311761403C2779098232 @default.
- W4311761403 hasConceptScore W4311761403C2780472235 @default.
- W4311761403 hasConceptScore W4311761403C41008148 @default.
- W4311761403 hasConceptScore W4311761403C41895202 @default.
- W4311761403 hasConceptScore W4311761403C530470458 @default.
- W4311761403 hasConceptScore W4311761403C71924100 @default.
- W4311761403 hasConceptScore W4311761403C81363708 @default.
- W4311761403 hasIssue "1" @default.
- W4311761403 hasLocation W43117614031 @default.
- W4311761403 hasOpenAccess W4311761403 @default.
- W4311761403 hasPrimaryLocation W43117614031 @default.
- W4311761403 hasRelatedWork W1842414821 @default.
- W4311761403 hasRelatedWork W2093929361 @default.
- W4311761403 hasRelatedWork W2155053728 @default.
- W4311761403 hasRelatedWork W2172773372 @default.