Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311762778> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4311762778 endingPage "104956" @default.
- W4311762778 startingPage "104956" @default.
- W4311762778 abstract "Owing to the prevalence of the coronavirus disease (COVID-19), coping with clinical issues at the individual level has become important to the healthcare system. Accordingly, precise initiation of treatment after a hospital visit is required for expedited processes and effective diagnoses of outpatients. To achieve this, artificial intelligence in medical natural language processing (NLP), such as a healthcare chatbot or a clinical decision support system, can be suitable tools for an advanced clinical system. Furthermore, support for decisions on the medical specialty from the initial visit can be helpful.In this study, we propose a medical specialty prediction model from patient-side medical question text based on pre-trained bidirectional encoder representations from transformers (BERT). The dataset comprised pairs of medical question texts and labeled specialties scraped from a website for the medical question-and-answer service. The model was fine-tuned for predicting the required medical specialty labels among 27 labels from medical question texts. To demonstrate the feasibility, we conducted experiments on a real-world dataset and elaborately evaluated the predictive performance compared with four deep learning NLP models through cross-validation and test set evaluation.The proposed model showed improved performance compared with competitive models in terms of overall specialties. In addition, we demonstrate the usefulness of the proposed model by performing case studies for visualization applications.The proposed model can benefit hospital patient management and reasonable recommendations for specialties for patients." @default.
- W4311762778 created "2022-12-28" @default.
- W4311762778 creator A5008851484 @default.
- W4311762778 creator A5012770069 @default.
- W4311762778 creator A5037704369 @default.
- W4311762778 creator A5067905786 @default.
- W4311762778 creator A5082350046 @default.
- W4311762778 date "2023-02-01" @default.
- W4311762778 modified "2023-10-12" @default.
- W4311762778 title "Predicting medical specialty from text based on a domain-specific pre-trained BERT" @default.
- W4311762778 cites W2169818249 @default.
- W4311762778 cites W2576404523 @default.
- W4311762778 cites W2911489562 @default.
- W4311762778 cites W2952638691 @default.
- W4311762778 cites W2963716420 @default.
- W4311762778 cites W2969468266 @default.
- W4311762778 cites W3033346947 @default.
- W4311762778 cites W3035833355 @default.
- W4311762778 cites W3044423116 @default.
- W4311762778 cites W3088018251 @default.
- W4311762778 cites W3093383442 @default.
- W4311762778 cites W3099950029 @default.
- W4311762778 cites W3117036764 @default.
- W4311762778 cites W3166931362 @default.
- W4311762778 cites W3167194600 @default.
- W4311762778 doi "https://doi.org/10.1016/j.ijmedinf.2022.104956" @default.
- W4311762778 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36512987" @default.
- W4311762778 hasPublicationYear "2023" @default.
- W4311762778 type Work @default.
- W4311762778 citedByCount "5" @default.
- W4311762778 countsByYear W43117627782023 @default.
- W4311762778 crossrefType "journal-article" @default.
- W4311762778 hasAuthorship W4311762778A5008851484 @default.
- W4311762778 hasAuthorship W4311762778A5012770069 @default.
- W4311762778 hasAuthorship W4311762778A5037704369 @default.
- W4311762778 hasAuthorship W4311762778A5067905786 @default.
- W4311762778 hasAuthorship W4311762778A5082350046 @default.
- W4311762778 hasBestOaLocation W43117627781 @default.
- W4311762778 hasConcept C119857082 @default.
- W4311762778 hasConcept C126838900 @default.
- W4311762778 hasConcept C138816342 @default.
- W4311762778 hasConcept C145642194 @default.
- W4311762778 hasConcept C154945302 @default.
- W4311762778 hasConcept C159110408 @default.
- W4311762778 hasConcept C160735492 @default.
- W4311762778 hasConcept C162324750 @default.
- W4311762778 hasConcept C20387591 @default.
- W4311762778 hasConcept C204321447 @default.
- W4311762778 hasConcept C2779041454 @default.
- W4311762778 hasConcept C41008148 @default.
- W4311762778 hasConcept C50522688 @default.
- W4311762778 hasConcept C512399662 @default.
- W4311762778 hasConcept C534262118 @default.
- W4311762778 hasConcept C71924100 @default.
- W4311762778 hasConceptScore W4311762778C119857082 @default.
- W4311762778 hasConceptScore W4311762778C126838900 @default.
- W4311762778 hasConceptScore W4311762778C138816342 @default.
- W4311762778 hasConceptScore W4311762778C145642194 @default.
- W4311762778 hasConceptScore W4311762778C154945302 @default.
- W4311762778 hasConceptScore W4311762778C159110408 @default.
- W4311762778 hasConceptScore W4311762778C160735492 @default.
- W4311762778 hasConceptScore W4311762778C162324750 @default.
- W4311762778 hasConceptScore W4311762778C20387591 @default.
- W4311762778 hasConceptScore W4311762778C204321447 @default.
- W4311762778 hasConceptScore W4311762778C2779041454 @default.
- W4311762778 hasConceptScore W4311762778C41008148 @default.
- W4311762778 hasConceptScore W4311762778C50522688 @default.
- W4311762778 hasConceptScore W4311762778C512399662 @default.
- W4311762778 hasConceptScore W4311762778C534262118 @default.
- W4311762778 hasConceptScore W4311762778C71924100 @default.
- W4311762778 hasFunder F4320321408 @default.
- W4311762778 hasFunder F4320322120 @default.
- W4311762778 hasLocation W43117627781 @default.
- W4311762778 hasLocation W43117627782 @default.
- W4311762778 hasLocation W43117627783 @default.
- W4311762778 hasOpenAccess W4311762778 @default.
- W4311762778 hasPrimaryLocation W43117627781 @default.
- W4311762778 hasRelatedWork W2411040353 @default.
- W4311762778 hasRelatedWork W2748952813 @default.
- W4311762778 hasRelatedWork W2899084033 @default.
- W4311762778 hasRelatedWork W2961085424 @default.
- W4311762778 hasRelatedWork W2978601735 @default.
- W4311762778 hasRelatedWork W3204793433 @default.
- W4311762778 hasRelatedWork W4286629047 @default.
- W4311762778 hasRelatedWork W4306674287 @default.
- W4311762778 hasRelatedWork W4309637067 @default.
- W4311762778 hasRelatedWork W4224009465 @default.
- W4311762778 hasVolume "170" @default.
- W4311762778 isParatext "false" @default.
- W4311762778 isRetracted "false" @default.
- W4311762778 workType "article" @default.