Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311762940> ?p ?o ?g. }
- W4311762940 endingPage "111374" @default.
- W4311762940 startingPage "111374" @default.
- W4311762940 abstract "Non-destructive testing for the quality of frozen food is of great interest. A model food product was developed as the test material for this study. Different modeling methods were applied to establish the relationship between the near-infrared (NIR) spectra of the frozen samples and quality indicators of drip loss, texture parameters including hardness, chewiness, gumminess and gel strength, respectively. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) analysis results show that the collected NIR spectra of the model food prepared based on different moisture content were well distinguished. The modeling results show that principal component regression (PCR), support vector machine regression (SVR), partial least squares regression (PLSR) and back-propagation artificial neural network (BP-ANN) algorithms could be used to predict the quality indicators of frozen samples. By comparison, the BP-ANN modeling approach performed better with higher R2 and lower root mean squared errors (RMSE)." @default.
- W4311762940 created "2022-12-28" @default.
- W4311762940 creator A5013998879 @default.
- W4311762940 creator A5015937318 @default.
- W4311762940 creator A5019934907 @default.
- W4311762940 creator A5077532071 @default.
- W4311762940 date "2023-04-01" @default.
- W4311762940 modified "2023-09-27" @default.
- W4311762940 title "Non-destructive quality determination of frozen food using NIR spectroscopy-based machine learning and predictive modelling" @default.
- W4311762940 cites W1977445207 @default.
- W4311762940 cites W1984016719 @default.
- W4311762940 cites W1985707007 @default.
- W4311762940 cites W1991013812 @default.
- W4311762940 cites W1995527334 @default.
- W4311762940 cites W2001804196 @default.
- W4311762940 cites W2011319726 @default.
- W4311762940 cites W2022210767 @default.
- W4311762940 cites W2035471121 @default.
- W4311762940 cites W2041752560 @default.
- W4311762940 cites W2048647540 @default.
- W4311762940 cites W2061637961 @default.
- W4311762940 cites W2080233769 @default.
- W4311762940 cites W2294540144 @default.
- W4311762940 cites W2344988453 @default.
- W4311762940 cites W2746365095 @default.
- W4311762940 cites W2791492845 @default.
- W4311762940 cites W2791730395 @default.
- W4311762940 cites W2793486999 @default.
- W4311762940 cites W2909232801 @default.
- W4311762940 cites W2909567130 @default.
- W4311762940 cites W2921016893 @default.
- W4311762940 cites W3004520746 @default.
- W4311762940 cites W3113832884 @default.
- W4311762940 cites W3129950792 @default.
- W4311762940 cites W3134462632 @default.
- W4311762940 cites W3145070389 @default.
- W4311762940 cites W3193659382 @default.
- W4311762940 cites W3202145407 @default.
- W4311762940 cites W4200459542 @default.
- W4311762940 cites W4210391426 @default.
- W4311762940 doi "https://doi.org/10.1016/j.jfoodeng.2022.111374" @default.
- W4311762940 hasPublicationYear "2023" @default.
- W4311762940 type Work @default.
- W4311762940 citedByCount "4" @default.
- W4311762940 countsByYear W43117629402023 @default.
- W4311762940 crossrefType "journal-article" @default.
- W4311762940 hasAuthorship W4311762940A5013998879 @default.
- W4311762940 hasAuthorship W4311762940A5015937318 @default.
- W4311762940 hasAuthorship W4311762940A5019934907 @default.
- W4311762940 hasAuthorship W4311762940A5077532071 @default.
- W4311762940 hasConcept C105795698 @default.
- W4311762940 hasConcept C12267149 @default.
- W4311762940 hasConcept C139945424 @default.
- W4311762940 hasConcept C152877465 @default.
- W4311762940 hasConcept C153180895 @default.
- W4311762940 hasConcept C154945302 @default.
- W4311762940 hasConcept C185592680 @default.
- W4311762940 hasConcept C186060115 @default.
- W4311762940 hasConcept C22354355 @default.
- W4311762940 hasConcept C27438332 @default.
- W4311762940 hasConcept C2780477921 @default.
- W4311762940 hasConcept C31903555 @default.
- W4311762940 hasConcept C33923547 @default.
- W4311762940 hasConcept C41008148 @default.
- W4311762940 hasConcept C50644808 @default.
- W4311762940 hasConcept C74887250 @default.
- W4311762940 hasConcept C86803240 @default.
- W4311762940 hasConceptScore W4311762940C105795698 @default.
- W4311762940 hasConceptScore W4311762940C12267149 @default.
- W4311762940 hasConceptScore W4311762940C139945424 @default.
- W4311762940 hasConceptScore W4311762940C152877465 @default.
- W4311762940 hasConceptScore W4311762940C153180895 @default.
- W4311762940 hasConceptScore W4311762940C154945302 @default.
- W4311762940 hasConceptScore W4311762940C185592680 @default.
- W4311762940 hasConceptScore W4311762940C186060115 @default.
- W4311762940 hasConceptScore W4311762940C22354355 @default.
- W4311762940 hasConceptScore W4311762940C27438332 @default.
- W4311762940 hasConceptScore W4311762940C2780477921 @default.
- W4311762940 hasConceptScore W4311762940C31903555 @default.
- W4311762940 hasConceptScore W4311762940C33923547 @default.
- W4311762940 hasConceptScore W4311762940C41008148 @default.
- W4311762940 hasConceptScore W4311762940C50644808 @default.
- W4311762940 hasConceptScore W4311762940C74887250 @default.
- W4311762940 hasConceptScore W4311762940C86803240 @default.
- W4311762940 hasLocation W43117629401 @default.
- W4311762940 hasOpenAccess W4311762940 @default.
- W4311762940 hasPrimaryLocation W43117629401 @default.
- W4311762940 hasRelatedWork W1496127902 @default.
- W4311762940 hasRelatedWork W2150870431 @default.
- W4311762940 hasRelatedWork W2349428435 @default.
- W4311762940 hasRelatedWork W2349507457 @default.
- W4311762940 hasRelatedWork W2586594535 @default.
- W4311762940 hasRelatedWork W2600619166 @default.
- W4311762940 hasRelatedWork W3006003209 @default.
- W4311762940 hasRelatedWork W4210724690 @default.
- W4311762940 hasRelatedWork W4210872355 @default.
- W4311762940 hasRelatedWork W2954124481 @default.
- W4311762940 hasVolume "343" @default.