Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311762962> ?p ?o ?g. }
- W4311762962 endingPage "234106" @default.
- W4311762962 startingPage "234106" @default.
- W4311762962 abstract "A systematic study is made of the accuracy and efficiency of a number of existing quadrature schemes for molecular Kohn-Sham Density-Functional Theory (DFT) using 408 molecules and 254 chemical reactions. Included are the fixed SG-x (x = 0-3) grids of Gill et al., Dasgupta, and Herbert, the 3-zone grids of Treutler and Ahlrichs, a fixed five-zone grid implemented in Molpro, and a new adaptive grid scheme. While all methods provide a systematic reduction of errors upon extension of the grid sizes, significant differences are observed in the accuracies for similar grid sizes with various approaches. For the tests in this work, the SG-x fixed grids are less suitable to achieve high accuracies in the DFT integration, while our new adaptive grid performed best among the schemes studied in this work. The extra computational time to generate the adaptive grid scales linearly with molecular size and is negligible compared with the time needed for the self-consistent field iterations for large molecules. A comparison of the grid accuracies using various density functionals shows that meta-GGA functionals need larger integration grids than GGA functionals to reach the same degree of accuracy, confirming previous investigations of the numerical stability of meta-GGA functionals. On the other hand, the grid integration errors are almost independent of the basis set, and the basis set errors are mostly much larger than the errors caused by the numerical integrations, even when using the smallest grids tested in this work." @default.
- W4311762962 created "2022-12-28" @default.
- W4311762962 creator A5000560894 @default.
- W4311762962 creator A5053392592 @default.
- W4311762962 creator A5057232293 @default.
- W4311762962 date "2022-12-21" @default.
- W4311762962 modified "2023-09-24" @default.
- W4311762962 title "Thermochemical evaluation of adaptive and fixed density functional theory quadrature schemes" @default.
- W4311762962 cites W1504692380 @default.
- W4311762962 cites W1569204652 @default.
- W4311762962 cites W1850509543 @default.
- W4311762962 cites W1963683620 @default.
- W4311762962 cites W1963774674 @default.
- W4311762962 cites W1970054695 @default.
- W4311762962 cites W1970287128 @default.
- W4311762962 cites W1972420726 @default.
- W4311762962 cites W1978386204 @default.
- W4311762962 cites W1979949205 @default.
- W4311762962 cites W1980056523 @default.
- W4311762962 cites W1981368803 @default.
- W4311762962 cites W1983072950 @default.
- W4311762962 cites W1983348565 @default.
- W4311762962 cites W1983738730 @default.
- W4311762962 cites W1985583109 @default.
- W4311762962 cites W1986130927 @default.
- W4311762962 cites W1986624837 @default.
- W4311762962 cites W1988091937 @default.
- W4311762962 cites W1988640226 @default.
- W4311762962 cites W1993077801 @default.
- W4311762962 cites W1995070318 @default.
- W4311762962 cites W1996565005 @default.
- W4311762962 cites W1996730574 @default.
- W4311762962 cites W2001823353 @default.
- W4311762962 cites W2002070885 @default.
- W4311762962 cites W2007016642 @default.
- W4311762962 cites W2013341293 @default.
- W4311762962 cites W2014079270 @default.
- W4311762962 cites W2015903283 @default.
- W4311762962 cites W2016773722 @default.
- W4311762962 cites W2016800344 @default.
- W4311762962 cites W2018912629 @default.
- W4311762962 cites W2019575445 @default.
- W4311762962 cites W2023271753 @default.
- W4311762962 cites W2023550819 @default.
- W4311762962 cites W2026172453 @default.
- W4311762962 cites W2028022118 @default.
- W4311762962 cites W2029016329 @default.
- W4311762962 cites W2030976617 @default.
- W4311762962 cites W2037210960 @default.
- W4311762962 cites W2037365376 @default.
- W4311762962 cites W2037658465 @default.
- W4311762962 cites W2037761549 @default.
- W4311762962 cites W2038242918 @default.
- W4311762962 cites W2042696216 @default.
- W4311762962 cites W2047644723 @default.
- W4311762962 cites W2049079467 @default.
- W4311762962 cites W2051648115 @default.
- W4311762962 cites W2051891162 @default.
- W4311762962 cites W2060501150 @default.
- W4311762962 cites W2061343869 @default.
- W4311762962 cites W2062340785 @default.
- W4311762962 cites W2062753745 @default.
- W4311762962 cites W2063833610 @default.
- W4311762962 cites W2063843436 @default.
- W4311762962 cites W2069006374 @default.
- W4311762962 cites W2069206975 @default.
- W4311762962 cites W2082572279 @default.
- W4311762962 cites W2086585111 @default.
- W4311762962 cites W2086888852 @default.
- W4311762962 cites W2086957099 @default.
- W4311762962 cites W2089154612 @default.
- W4311762962 cites W2090818412 @default.
- W4311762962 cites W2092937521 @default.
- W4311762962 cites W2096608892 @default.
- W4311762962 cites W2100986371 @default.
- W4311762962 cites W2111705896 @default.
- W4311762962 cites W2125132504 @default.
- W4311762962 cites W2128516170 @default.
- W4311762962 cites W2143379966 @default.
- W4311762962 cites W2150697053 @default.
- W4311762962 cites W2168368024 @default.
- W4311762962 cites W2230728100 @default.
- W4311762962 cites W2293182612 @default.
- W4311762962 cites W2312454654 @default.
- W4311762962 cites W2319715725 @default.
- W4311762962 cites W2320534486 @default.
- W4311762962 cites W2336270984 @default.
- W4311762962 cites W2396016254 @default.
- W4311762962 cites W2425182283 @default.
- W4311762962 cites W2589280805 @default.
- W4311762962 cites W2639728117 @default.
- W4311762962 cites W2769331892 @default.
- W4311762962 cites W2902110956 @default.
- W4311762962 cites W2950119333 @default.
- W4311762962 cites W3009286841 @default.
- W4311762962 cites W3017284665 @default.
- W4311762962 cites W3034310241 @default.
- W4311762962 cites W3082215798 @default.