Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311764039> ?p ?o ?g. }
- W4311764039 abstract "Remote sensing technologies have been extensively used in forest management in predicting stand parameters. The goal of this study is to use Landsat 8 and Sentinel-2 satellite images to estimate stand volume, basal area, number of trees, mean diameter, and top height. 180 temporary sample plots were taken in pure Crimean pine stands with varied structure. Reflectance, vegetation indices, and eight texture values were generated from Landsat 8 and Sentinel-2 satellite images. The stand parameters were modelled with the remotely sensed data using multiple linear regression, support vector machine, and deep learning techniques. The results showed that the support vector machine technique provided the highest level of model performance with 45° orientation for number of trees (R2 = 0.98, RMSE%=5.97) and 90° orientation for basal area (R2=0.91, RMSE%=15.22). The results indicated that the texture values presented better results than the reflectance and the vegetation indices in estimating the stand parameters." @default.
- W4311764039 created "2022-12-28" @default.
- W4311764039 creator A5007037800 @default.
- W4311764039 creator A5042586550 @default.
- W4311764039 creator A5044136982 @default.
- W4311764039 date "2022-12-28" @default.
- W4311764039 modified "2023-09-26" @default.
- W4311764039 title "Modelling some stand parameters using Landsat 8 OLI and Sentinel-2 satellite images by machine learning techniques: a case study in Türkiye" @default.
- W4311764039 cites W1964396812 @default.
- W4311764039 cites W1983865151 @default.
- W4311764039 cites W1985479415 @default.
- W4311764039 cites W1991933965 @default.
- W4311764039 cites W1994809198 @default.
- W4311764039 cites W2002649985 @default.
- W4311764039 cites W2020520344 @default.
- W4311764039 cites W2027568888 @default.
- W4311764039 cites W2049398443 @default.
- W4311764039 cites W2055449289 @default.
- W4311764039 cites W2060297838 @default.
- W4311764039 cites W2063051191 @default.
- W4311764039 cites W2064417027 @default.
- W4311764039 cites W2069959013 @default.
- W4311764039 cites W2077509829 @default.
- W4311764039 cites W2079196379 @default.
- W4311764039 cites W2079451150 @default.
- W4311764039 cites W2098722265 @default.
- W4311764039 cites W2098805041 @default.
- W4311764039 cites W2110642642 @default.
- W4311764039 cites W2119709769 @default.
- W4311764039 cites W2124837560 @default.
- W4311764039 cites W2137970541 @default.
- W4311764039 cites W2159961845 @default.
- W4311764039 cites W2161815745 @default.
- W4311764039 cites W2171979590 @default.
- W4311764039 cites W2255099501 @default.
- W4311764039 cites W2328160004 @default.
- W4311764039 cites W2488702363 @default.
- W4311764039 cites W2580767461 @default.
- W4311764039 cites W2589181229 @default.
- W4311764039 cites W2762591035 @default.
- W4311764039 cites W2772177607 @default.
- W4311764039 cites W2795490417 @default.
- W4311764039 cites W2885677111 @default.
- W4311764039 cites W2893278282 @default.
- W4311764039 cites W2897870114 @default.
- W4311764039 cites W2905659887 @default.
- W4311764039 cites W2906231571 @default.
- W4311764039 cites W2911554154 @default.
- W4311764039 cites W2928980835 @default.
- W4311764039 cites W2946896775 @default.
- W4311764039 cites W2950674916 @default.
- W4311764039 cites W29510506 @default.
- W4311764039 cites W2955388112 @default.
- W4311764039 cites W2968347155 @default.
- W4311764039 cites W2974691105 @default.
- W4311764039 cites W3011514481 @default.
- W4311764039 cites W3021549767 @default.
- W4311764039 cites W3023335109 @default.
- W4311764039 cites W3024777934 @default.
- W4311764039 cites W3042522861 @default.
- W4311764039 cites W3089450095 @default.
- W4311764039 cites W3115999083 @default.
- W4311764039 cites W3134572851 @default.
- W4311764039 cites W3160912189 @default.
- W4311764039 cites W3186294139 @default.
- W4311764039 cites W4200487308 @default.
- W4311764039 doi "https://doi.org/10.1080/10106049.2022.2158238" @default.
- W4311764039 hasPublicationYear "2022" @default.
- W4311764039 type Work @default.
- W4311764039 citedByCount "4" @default.
- W4311764039 countsByYear W43117640392023 @default.
- W4311764039 crossrefType "journal-article" @default.
- W4311764039 hasAuthorship W4311764039A5007037800 @default.
- W4311764039 hasAuthorship W4311764039A5042586550 @default.
- W4311764039 hasAuthorship W4311764039A5044136982 @default.
- W4311764039 hasBestOaLocation W43117640391 @default.
- W4311764039 hasConcept C105795698 @default.
- W4311764039 hasConcept C108597893 @default.
- W4311764039 hasConcept C120665830 @default.
- W4311764039 hasConcept C121332964 @default.
- W4311764039 hasConcept C12267149 @default.
- W4311764039 hasConcept C127413603 @default.
- W4311764039 hasConcept C139945424 @default.
- W4311764039 hasConcept C142724271 @default.
- W4311764039 hasConcept C146978453 @default.
- W4311764039 hasConcept C154945302 @default.
- W4311764039 hasConcept C16345878 @default.
- W4311764039 hasConcept C169258074 @default.
- W4311764039 hasConcept C19269812 @default.
- W4311764039 hasConcept C205649164 @default.
- W4311764039 hasConcept C2524010 @default.
- W4311764039 hasConcept C2776133958 @default.
- W4311764039 hasConcept C33923547 @default.
- W4311764039 hasConcept C39432304 @default.
- W4311764039 hasConcept C41008148 @default.
- W4311764039 hasConcept C58640448 @default.
- W4311764039 hasConcept C62649853 @default.
- W4311764039 hasConcept C71924100 @default.
- W4311764039 hasConcept C91354502 @default.
- W4311764039 hasConcept C97137747 @default.