Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311764548> ?p ?o ?g. }
- W4311764548 abstract "From past few years, the Internet of things (IoT) is an emerging and encouraging technology that has gained prominence in the industries. Due to its increasing usages, a huge amount of data are exchanged within IoT architecture using the internet, which is why privacy and cyber-security are major issues. The heterogeneous nature of various technologies that are combined using IoT makes it problematic to provide security using prescriptive networking. The future of secure IoT depends on privacy issues. The research intends to improve security mechanisms based on intrusion and anomaly detection for IoT using deep learning. In this context, a systematic literature review (SLR) is conducted to identify ‘How to perform data transformation analysis of IoT dataset to detect anomaly detection for cyber IoT attacks? The SLR result found 24 datasets used for IoT analysis, 35 performance metrics to evaluate IoT problems, 6–42 features identified for detection, 42 preprocessing techniques have been used for transforming data, and 26 different methods and models were used to process the given problem. The SLR highlights further enhancement for the issue and identification of cyber-security in IoT. Anomaly detection can be done based on reinforcement deep learning after a thorough analysis of SLR." @default.
- W4311764548 created "2022-12-28" @default.
- W4311764548 creator A5013274105 @default.
- W4311764548 creator A5019190780 @default.
- W4311764548 creator A5024367402 @default.
- W4311764548 creator A5039787162 @default.
- W4311764548 creator A5064562623 @default.
- W4311764548 date "2022-12-05" @default.
- W4311764548 modified "2023-09-26" @default.
- W4311764548 title "Anomaly Detection for Cyber Internet of Things Attacks: A Systematic Review" @default.
- W4311764548 cites W1976262362 @default.
- W4311764548 cites W2038950420 @default.
- W4311764548 cites W2104927807 @default.
- W4311764548 cites W2531320996 @default.
- W4311764548 cites W2589530322 @default.
- W4311764548 cites W2679983068 @default.
- W4311764548 cites W2735466339 @default.
- W4311764548 cites W2752291283 @default.
- W4311764548 cites W2769077153 @default.
- W4311764548 cites W2778463716 @default.
- W4311764548 cites W2799947440 @default.
- W4311764548 cites W2800369870 @default.
- W4311764548 cites W2804566915 @default.
- W4311764548 cites W2809124410 @default.
- W4311764548 cites W2809706118 @default.
- W4311764548 cites W2810641345 @default.
- W4311764548 cites W2810749629 @default.
- W4311764548 cites W2883753518 @default.
- W4311764548 cites W2890392025 @default.
- W4311764548 cites W2892077825 @default.
- W4311764548 cites W2896057619 @default.
- W4311764548 cites W2899090608 @default.
- W4311764548 cites W2900890160 @default.
- W4311764548 cites W2902106343 @default.
- W4311764548 cites W2902168116 @default.
- W4311764548 cites W2903220614 @default.
- W4311764548 cites W2914940294 @default.
- W4311764548 cites W2945594226 @default.
- W4311764548 cites W2957682442 @default.
- W4311764548 cites W2963125010 @default.
- W4311764548 cites W2969022468 @default.
- W4311764548 cites W2971145443 @default.
- W4311764548 cites W2971633022 @default.
- W4311764548 cites W2974488412 @default.
- W4311764548 cites W2977506575 @default.
- W4311764548 cites W2994804501 @default.
- W4311764548 cites W2995789841 @default.
- W4311764548 cites W3004178587 @default.
- W4311764548 cites W3014810737 @default.
- W4311764548 cites W3027164667 @default.
- W4311764548 cites W3028984135 @default.
- W4311764548 cites W3033675321 @default.
- W4311764548 cites W3033778399 @default.
- W4311764548 cites W3035366189 @default.
- W4311764548 cites W3044251871 @default.
- W4311764548 cites W3046905592 @default.
- W4311764548 cites W3047269164 @default.
- W4311764548 cites W3081562797 @default.
- W4311764548 cites W4288080331 @default.
- W4311764548 doi "https://doi.org/10.1080/08839514.2022.2137639" @default.
- W4311764548 hasPublicationYear "2022" @default.
- W4311764548 type Work @default.
- W4311764548 citedByCount "1" @default.
- W4311764548 countsByYear W43117645482023 @default.
- W4311764548 crossrefType "journal-article" @default.
- W4311764548 hasAuthorship W4311764548A5013274105 @default.
- W4311764548 hasAuthorship W4311764548A5019190780 @default.
- W4311764548 hasAuthorship W4311764548A5024367402 @default.
- W4311764548 hasAuthorship W4311764548A5039787162 @default.
- W4311764548 hasAuthorship W4311764548A5064562623 @default.
- W4311764548 hasConcept C10551718 @default.
- W4311764548 hasConcept C110875604 @default.
- W4311764548 hasConcept C111919701 @default.
- W4311764548 hasConcept C116834253 @default.
- W4311764548 hasConcept C124101348 @default.
- W4311764548 hasConcept C136764020 @default.
- W4311764548 hasConcept C151730666 @default.
- W4311764548 hasConcept C2522767166 @default.
- W4311764548 hasConcept C2779343474 @default.
- W4311764548 hasConcept C35525427 @default.
- W4311764548 hasConcept C38652104 @default.
- W4311764548 hasConcept C41008148 @default.
- W4311764548 hasConcept C59822182 @default.
- W4311764548 hasConcept C739882 @default.
- W4311764548 hasConcept C75684735 @default.
- W4311764548 hasConcept C81860439 @default.
- W4311764548 hasConcept C86803240 @default.
- W4311764548 hasConcept C98045186 @default.
- W4311764548 hasConceptScore W4311764548C10551718 @default.
- W4311764548 hasConceptScore W4311764548C110875604 @default.
- W4311764548 hasConceptScore W4311764548C111919701 @default.
- W4311764548 hasConceptScore W4311764548C116834253 @default.
- W4311764548 hasConceptScore W4311764548C124101348 @default.
- W4311764548 hasConceptScore W4311764548C136764020 @default.
- W4311764548 hasConceptScore W4311764548C151730666 @default.
- W4311764548 hasConceptScore W4311764548C2522767166 @default.
- W4311764548 hasConceptScore W4311764548C2779343474 @default.
- W4311764548 hasConceptScore W4311764548C35525427 @default.
- W4311764548 hasConceptScore W4311764548C38652104 @default.
- W4311764548 hasConceptScore W4311764548C41008148 @default.