Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311769909> ?p ?o ?g. }
- W4311769909 endingPage "105184" @default.
- W4311769909 startingPage "105184" @default.
- W4311769909 abstract "This paper examines the variations and derivations of the dual Euler-Rodrigues formula from various mathematical forms, including the matrix in 6 × 6, the dual matrix, Lie group SE(3) of the exponential map of the Lie algebra se(3), and the dual quaternion conjugation, and investigates their intrinsic connections. Based on the dual Euler-Rodrigues formula, the axis, the dual rotation angle, and the new traces are obtained by using the properties of the skew-symmetric matrices. In decomposing the Chasles’ motion, this paper examines two ways of realization of the motion based on the Mozzi-Chasles’ axis. With the equivalent motion, the paper relates the finite displacement screw matrix, the exponential map, and the dual quaternion conjugation to the dual Euler-Rodrigues formula and reveals their connection with the Mozzi-Chasles axis screw, whose parameters are used to construct the Lie algebra, the dual Euler-Rodrigues formula, and the dual quaternion. Further, using the Mozzi-Chasles axis screw, the paper presents a complete geometrical interpretation, including both the translation and rotation, and associates it with the algebraic presentation. By decomposing the equivalent translation induced by the rotation, the paper presents the mapping between the compound translation and the secondary part of the Mozzi-Chasles axis screw. With this map and the compound translation, the paper hence reveals the intrinsic connection between various presentations of rigid body transformations by formulating them into the dual Euler-Rodrigues formula and presents the relations of the exponential map of the Mozzi-Chasles axis screw to the finite displacement screw matrix and the dual Euler-Rodrigues formula, leading to the understanding of the various forms of a rigid body displacement in correspondence to the dual Euler-Rodrigues formula." @default.
- W4311769909 created "2022-12-28" @default.
- W4311769909 creator A5040440410 @default.
- W4311769909 creator A5081844181 @default.
- W4311769909 date "2023-03-01" @default.
- W4311769909 modified "2023-10-18" @default.
- W4311769909 title "The dual Euler-Rodrigues formula in various mathematical forms and their intrinsic relations" @default.
- W4311769909 cites W1963976266 @default.
- W4311769909 cites W1976080190 @default.
- W4311769909 cites W1979384416 @default.
- W4311769909 cites W1987129039 @default.
- W4311769909 cites W1989797754 @default.
- W4311769909 cites W1992964666 @default.
- W4311769909 cites W1994268222 @default.
- W4311769909 cites W2008092976 @default.
- W4311769909 cites W2017420452 @default.
- W4311769909 cites W2024050805 @default.
- W4311769909 cites W2028263615 @default.
- W4311769909 cites W2031734759 @default.
- W4311769909 cites W2032029126 @default.
- W4311769909 cites W2032207585 @default.
- W4311769909 cites W2036784669 @default.
- W4311769909 cites W2039050554 @default.
- W4311769909 cites W2040040776 @default.
- W4311769909 cites W2041649107 @default.
- W4311769909 cites W2044863345 @default.
- W4311769909 cites W2046078413 @default.
- W4311769909 cites W2047403779 @default.
- W4311769909 cites W2051980925 @default.
- W4311769909 cites W2053241953 @default.
- W4311769909 cites W2057287063 @default.
- W4311769909 cites W2058244961 @default.
- W4311769909 cites W2064637414 @default.
- W4311769909 cites W2067051482 @default.
- W4311769909 cites W2068491669 @default.
- W4311769909 cites W2071108842 @default.
- W4311769909 cites W2078064020 @default.
- W4311769909 cites W2086036168 @default.
- W4311769909 cites W2088168884 @default.
- W4311769909 cites W2091427432 @default.
- W4311769909 cites W2091743831 @default.
- W4311769909 cites W2122104565 @default.
- W4311769909 cites W2136340622 @default.
- W4311769909 cites W2136435475 @default.
- W4311769909 cites W2136474093 @default.
- W4311769909 cites W2151285298 @default.
- W4311769909 cites W2202678121 @default.
- W4311769909 cites W2246023205 @default.
- W4311769909 cites W2299463253 @default.
- W4311769909 cites W2314262589 @default.
- W4311769909 cites W2396139960 @default.
- W4311769909 cites W2535541121 @default.
- W4311769909 cites W2769646452 @default.
- W4311769909 cites W2778545644 @default.
- W4311769909 cites W2802365455 @default.
- W4311769909 cites W2807869185 @default.
- W4311769909 cites W2947118944 @default.
- W4311769909 cites W3018632141 @default.
- W4311769909 cites W3042400005 @default.
- W4311769909 cites W3043313889 @default.
- W4311769909 cites W3083637898 @default.
- W4311769909 cites W3113198977 @default.
- W4311769909 cites W3134319763 @default.
- W4311769909 cites W3204174458 @default.
- W4311769909 cites W4200461983 @default.
- W4311769909 cites W4210334302 @default.
- W4311769909 cites W4224257555 @default.
- W4311769909 cites W4249120887 @default.
- W4311769909 cites W4288680457 @default.
- W4311769909 cites W59605967 @default.
- W4311769909 doi "https://doi.org/10.1016/j.mechmachtheory.2022.105184" @default.
- W4311769909 hasPublicationYear "2023" @default.
- W4311769909 type Work @default.
- W4311769909 citedByCount "2" @default.
- W4311769909 countsByYear W43117699092023 @default.
- W4311769909 crossrefType "journal-article" @default.
- W4311769909 hasAuthorship W4311769909A5040440410 @default.
- W4311769909 hasAuthorship W4311769909A5081844181 @default.
- W4311769909 hasBestOaLocation W43117699091 @default.
- W4311769909 hasConcept C104317684 @default.
- W4311769909 hasConcept C105580179 @default.
- W4311769909 hasConcept C106487976 @default.
- W4311769909 hasConcept C121332964 @default.
- W4311769909 hasConcept C124952713 @default.
- W4311769909 hasConcept C134306372 @default.
- W4311769909 hasConcept C136119220 @default.
- W4311769909 hasConcept C142362112 @default.
- W4311769909 hasConcept C145941777 @default.
- W4311769909 hasConcept C146160929 @default.
- W4311769909 hasConcept C149364088 @default.
- W4311769909 hasConcept C158693339 @default.
- W4311769909 hasConcept C159985019 @default.
- W4311769909 hasConcept C185592680 @default.
- W4311769909 hasConcept C187915474 @default.
- W4311769909 hasConcept C192562407 @default.
- W4311769909 hasConcept C200127275 @default.
- W4311769909 hasConcept C202444582 @default.
- W4311769909 hasConcept C2524010 @default.