Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311771212> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4311771212 endingPage "102491" @default.
- W4311771212 startingPage "102491" @default.
- W4311771212 abstract "Tool wear prediction is of significance to reduce energy consumption through cutting parameter optimization. However, the current studies ignore the effect of machine aging on the tool wear prediction model, and their cutting parameter optimization methods cannot cope with the dynamic change of tool wear in the machining process. Thus, a reinforcement learning-enabled integrated method of tool wear prediction and cutting parameter optimization is proposed for minimizing energy consumption and production time. Specifically, the multi-source heterogeneous data fusion-based (MHDF) tool wear prediction model considering machine aging is first proposed to obtain the tool wear of the cutting tool. Then, a Markov Decision Process is designed to model the cutting parameter optimization process, which can be utilized to determine the proper cutting parameters adapted to the dynamic change of tool wear. Finally, the proposed method is demonstrated by extensive comparative experiments, and the results show that: 1) The proposed tool wear prediction model eliminates the influence of machine aging on prediction accuracy and has better generalizability for the machining data under different machine aging conditions, and its testing accuracy reaches 96.09%. 2) The proposed optimization method can adapt to the dynamic change of tool wear and further reduce the energy consumption and production time by 6.72% and 8.60% compared to that of not considering tool wear. The computation time of the proposed method is reduced by an average of 71.80%." @default.
- W4311771212 created "2022-12-28" @default.
- W4311771212 creator A5011025844 @default.
- W4311771212 creator A5026253655 @default.
- W4311771212 creator A5027475930 @default.
- W4311771212 creator A5038338684 @default.
- W4311771212 creator A5080928745 @default.
- W4311771212 date "2023-06-01" @default.
- W4311771212 modified "2023-10-17" @default.
- W4311771212 title "A data and knowledge-driven cutting parameter adaptive optimization method considering dynamic tool wear" @default.
- W4311771212 cites W1716715951 @default.
- W4311771212 cites W2003947476 @default.
- W4311771212 cites W2012612381 @default.
- W4311771212 cites W2031808290 @default.
- W4311771212 cites W2108968575 @default.
- W4311771212 cites W2145339207 @default.
- W4311771212 cites W2371176349 @default.
- W4311771212 cites W2465380898 @default.
- W4311771212 cites W2488339603 @default.
- W4311771212 cites W2547858766 @default.
- W4311771212 cites W2754029504 @default.
- W4311771212 cites W2762204677 @default.
- W4311771212 cites W2769319337 @default.
- W4311771212 cites W2781122281 @default.
- W4311771212 cites W2789973890 @default.
- W4311771212 cites W2804964124 @default.
- W4311771212 cites W2810142031 @default.
- W4311771212 cites W2895278217 @default.
- W4311771212 cites W2936377522 @default.
- W4311771212 cites W2938538323 @default.
- W4311771212 cites W2951216825 @default.
- W4311771212 cites W2962899903 @default.
- W4311771212 cites W2963345573 @default.
- W4311771212 cites W2975932043 @default.
- W4311771212 cites W2987840306 @default.
- W4311771212 cites W3012250961 @default.
- W4311771212 cites W3025145154 @default.
- W4311771212 cites W3093025823 @default.
- W4311771212 cites W3134476446 @default.
- W4311771212 cites W3146151642 @default.
- W4311771212 cites W3209314316 @default.
- W4311771212 cites W4223477529 @default.
- W4311771212 doi "https://doi.org/10.1016/j.rcim.2022.102491" @default.
- W4311771212 hasPublicationYear "2023" @default.
- W4311771212 type Work @default.
- W4311771212 citedByCount "1" @default.
- W4311771212 crossrefType "journal-article" @default.
- W4311771212 hasAuthorship W4311771212A5011025844 @default.
- W4311771212 hasAuthorship W4311771212A5026253655 @default.
- W4311771212 hasAuthorship W4311771212A5027475930 @default.
- W4311771212 hasAuthorship W4311771212A5038338684 @default.
- W4311771212 hasAuthorship W4311771212A5080928745 @default.
- W4311771212 hasConcept C105795698 @default.
- W4311771212 hasConcept C111919701 @default.
- W4311771212 hasConcept C119599485 @default.
- W4311771212 hasConcept C127413603 @default.
- W4311771212 hasConcept C27158222 @default.
- W4311771212 hasConcept C2776450708 @default.
- W4311771212 hasConcept C2780165032 @default.
- W4311771212 hasConcept C2780383046 @default.
- W4311771212 hasConcept C33923547 @default.
- W4311771212 hasConcept C41008148 @default.
- W4311771212 hasConcept C523214423 @default.
- W4311771212 hasConcept C5941749 @default.
- W4311771212 hasConcept C78519656 @default.
- W4311771212 hasConcept C98045186 @default.
- W4311771212 hasConceptScore W4311771212C105795698 @default.
- W4311771212 hasConceptScore W4311771212C111919701 @default.
- W4311771212 hasConceptScore W4311771212C119599485 @default.
- W4311771212 hasConceptScore W4311771212C127413603 @default.
- W4311771212 hasConceptScore W4311771212C27158222 @default.
- W4311771212 hasConceptScore W4311771212C2776450708 @default.
- W4311771212 hasConceptScore W4311771212C2780165032 @default.
- W4311771212 hasConceptScore W4311771212C2780383046 @default.
- W4311771212 hasConceptScore W4311771212C33923547 @default.
- W4311771212 hasConceptScore W4311771212C41008148 @default.
- W4311771212 hasConceptScore W4311771212C523214423 @default.
- W4311771212 hasConceptScore W4311771212C5941749 @default.
- W4311771212 hasConceptScore W4311771212C78519656 @default.
- W4311771212 hasConceptScore W4311771212C98045186 @default.
- W4311771212 hasLocation W43117712121 @default.
- W4311771212 hasOpenAccess W4311771212 @default.
- W4311771212 hasPrimaryLocation W43117712121 @default.
- W4311771212 hasRelatedWork W1971161455 @default.
- W4311771212 hasRelatedWork W2018496888 @default.
- W4311771212 hasRelatedWork W2072862869 @default.
- W4311771212 hasRelatedWork W2567125577 @default.
- W4311771212 hasRelatedWork W2621319375 @default.
- W4311771212 hasRelatedWork W3016320177 @default.
- W4311771212 hasRelatedWork W4293793777 @default.
- W4311771212 hasRelatedWork W4310350897 @default.
- W4311771212 hasRelatedWork W2234044006 @default.
- W4311771212 hasRelatedWork W2611666546 @default.
- W4311771212 hasVolume "81" @default.
- W4311771212 isParatext "false" @default.
- W4311771212 isRetracted "false" @default.
- W4311771212 workType "article" @default.