Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311772775> ?p ?o ?g. }
- W4311772775 endingPage "102509" @default.
- W4311772775 startingPage "102509" @default.
- W4311772775 abstract "Remanufacturing system scheduling is an essential and effective approach to realize the digitization and greening of the remanufacturing industry. However, previous researches on the remanufacturing system scheduling problem mainly consider a single or two production stages and economic objectives. In this paper, by integrating the three core production stages, i.e., disassembly, reprocessing and reassembly together, we study the energy-aware remanufacturing system scheduling problem in which the well-accepted Turn Off and On strategy is also considered. First, a mathematical model aiming at minimizing the total energy consumption (TEC) of the remanufacturing system is established. Then, a hybrid genetic algorithm based on variable neighborhood search (GAVNS) solution method is proposed, given the NP-hard nature of the problem. In GAVNS, each chromosome is encoded by a job sequence and three different decoding methods are specially designed according to the formation of optimization objective TEC. To enhance the algorithm's local search capability, the variable neighborhood search technique is introduced. The feasibility and effectiveness of GAVNS in addressing the energy-aware remanufacturing system scheduling problem is verified through simulation experiments on a set of designed test instances. Experimental results also demonstrate that: (1) the Turn Off and On strategy can effectively reduce TEC of the remanufacturing system, which can reach an energy saving rate of 6.68%; (2) the performance of those decoding methods varies with respect to the problem size; (3) the decoding method based on minimizing the energy consumption of the remanufacturing system (namely DM3) has the best performance among the three decoding methods in most cases; (4) GAVNS is more effective than its four peers, i.e., a variant GAVNS_R, iterated greedy algorithm (IG), extended artificial bee colony algorithm (EABC), discrete invasive weed optimization algorithm (DIWO) in seeking the optimal schedule." @default.
- W4311772775 created "2022-12-28" @default.
- W4311772775 creator A5025269338 @default.
- W4311772775 creator A5029524587 @default.
- W4311772775 creator A5031625880 @default.
- W4311772775 creator A5040793026 @default.
- W4311772775 creator A5045305170 @default.
- W4311772775 date "2023-06-01" @default.
- W4311772775 modified "2023-10-11" @default.
- W4311772775 title "A hybrid genetic algorithm with multiple decoding methods for energy-aware remanufacturing system scheduling problem" @default.
- W4311772775 cites W1967608764 @default.
- W4311772775 cites W2001612470 @default.
- W4311772775 cites W2008467125 @default.
- W4311772775 cites W2010782911 @default.
- W4311772775 cites W2019213421 @default.
- W4311772775 cites W2048541905 @default.
- W4311772775 cites W2084576452 @default.
- W4311772775 cites W2139242502 @default.
- W4311772775 cites W2254415770 @default.
- W4311772775 cites W2287773671 @default.
- W4311772775 cites W2339929657 @default.
- W4311772775 cites W2530968354 @default.
- W4311772775 cites W2580343980 @default.
- W4311772775 cites W2747755509 @default.
- W4311772775 cites W2768068192 @default.
- W4311772775 cites W2774864303 @default.
- W4311772775 cites W2793315355 @default.
- W4311772775 cites W2796372273 @default.
- W4311772775 cites W2802926601 @default.
- W4311772775 cites W2903823367 @default.
- W4311772775 cites W2905418984 @default.
- W4311772775 cites W2955041090 @default.
- W4311772775 cites W2979410542 @default.
- W4311772775 cites W2999485303 @default.
- W4311772775 cites W3000227833 @default.
- W4311772775 cites W3021534971 @default.
- W4311772775 cites W3031248924 @default.
- W4311772775 cites W3048322856 @default.
- W4311772775 cites W3048985025 @default.
- W4311772775 cites W3089083305 @default.
- W4311772775 cites W3092670634 @default.
- W4311772775 cites W3095610665 @default.
- W4311772775 cites W3135371840 @default.
- W4311772775 cites W3176350454 @default.
- W4311772775 cites W3179053552 @default.
- W4311772775 cites W3183800135 @default.
- W4311772775 cites W3202076803 @default.
- W4311772775 cites W3205079862 @default.
- W4311772775 cites W3209292605 @default.
- W4311772775 cites W3209635021 @default.
- W4311772775 cites W3211131134 @default.
- W4311772775 cites W3212997631 @default.
- W4311772775 cites W4211250418 @default.
- W4311772775 cites W4220657015 @default.
- W4311772775 cites W4220943254 @default.
- W4311772775 cites W4250503569 @default.
- W4311772775 cites W4285104564 @default.
- W4311772775 cites W4288062480 @default.
- W4311772775 doi "https://doi.org/10.1016/j.rcim.2022.102509" @default.
- W4311772775 hasPublicationYear "2023" @default.
- W4311772775 type Work @default.
- W4311772775 citedByCount "10" @default.
- W4311772775 countsByYear W43117727752023 @default.
- W4311772775 crossrefType "journal-article" @default.
- W4311772775 hasAuthorship W4311772775A5025269338 @default.
- W4311772775 hasAuthorship W4311772775A5029524587 @default.
- W4311772775 hasAuthorship W4311772775A5031625880 @default.
- W4311772775 hasAuthorship W4311772775A5040793026 @default.
- W4311772775 hasAuthorship W4311772775A5045305170 @default.
- W4311772775 hasConcept C111919701 @default.
- W4311772775 hasConcept C11413529 @default.
- W4311772775 hasConcept C116403925 @default.
- W4311772775 hasConcept C117671659 @default.
- W4311772775 hasConcept C119599485 @default.
- W4311772775 hasConcept C121332964 @default.
- W4311772775 hasConcept C126255220 @default.
- W4311772775 hasConcept C127413603 @default.
- W4311772775 hasConcept C1276947 @default.
- W4311772775 hasConcept C176379880 @default.
- W4311772775 hasConcept C206729178 @default.
- W4311772775 hasConcept C2778738845 @default.
- W4311772775 hasConcept C2780165032 @default.
- W4311772775 hasConcept C33923547 @default.
- W4311772775 hasConcept C41008148 @default.
- W4311772775 hasConcept C55416958 @default.
- W4311772775 hasConcept C57273362 @default.
- W4311772775 hasConcept C68387754 @default.
- W4311772775 hasConcept C79403827 @default.
- W4311772775 hasConcept C8880873 @default.
- W4311772775 hasConceptScore W4311772775C111919701 @default.
- W4311772775 hasConceptScore W4311772775C11413529 @default.
- W4311772775 hasConceptScore W4311772775C116403925 @default.
- W4311772775 hasConceptScore W4311772775C117671659 @default.
- W4311772775 hasConceptScore W4311772775C119599485 @default.
- W4311772775 hasConceptScore W4311772775C121332964 @default.
- W4311772775 hasConceptScore W4311772775C126255220 @default.
- W4311772775 hasConceptScore W4311772775C127413603 @default.
- W4311772775 hasConceptScore W4311772775C1276947 @default.