Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311773326> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4311773326 endingPage "159" @default.
- W4311773326 startingPage "147" @default.
- W4311773326 abstract "In recent years, the application of artificial intelligence (AI) in agriculture has grown to be the most important research domain. The proposed work focuses on forecasting rice blast disease outbreaks in paddy crops. Disease management in the farm fields is the most difficult problem on the planet. There is a variety of reasons for this, first, a lack of farmers’ experience in diagnosing diseases, second experts’ experience in detecting diseases visually, and third unfavorable climate. In recent days, researchers have offered a variety of time-series techniques in different applications. This study adds time-series techniques to the field of agriculture by forecasting crucial rice blast disease outbreaks in the paddy crop of the Davangere region based on daily weather data obtained from KSNDMC. The statistical time-series technique called ARIMA is trained by employing real data of blast disease outbreaks in the Davangere region from the period of 2015–2019. Meanwhile, the deep BiLSTM model is trained by employing real weather data and blast disease outbreaks of the Davangere region. Both models are evaluated by performance metrics, such as mean squared error and mean absolute error. The proposed research is focused on the hybrid model ARIMA–BiLSTM which is a combination of the statistical ARIMA model and deep BiLSTM model. The seasonal component of the rice blast disease outbreak feature is extracted from the additive decompose function used in the ARIMA model and fed as a dependent feature for the BiLSTM model. According to the results obtained, the hybrid approach can successfully forecast blast disease outbreaks in paddy crops with a mean squared error of 0.037 and a mean absolute error of 0.028 compared to the statistical ARIMA and deep BiLSTM model." @default.
- W4311773326 created "2022-12-28" @default.
- W4311773326 creator A5000667118 @default.
- W4311773326 creator A5029362649 @default.
- W4311773326 creator A5052885281 @default.
- W4311773326 creator A5073038523 @default.
- W4311773326 date "2022-12-15" @default.
- W4311773326 modified "2023-10-03" @default.
- W4311773326 title "Novel hybrid ARIMA–BiLSTM model for forecasting of rice blast disease outbreaks for sustainable rice production" @default.
- W4311773326 cites W143227901 @default.
- W4311773326 cites W2125650005 @default.
- W4311773326 cites W2149369033 @default.
- W4311773326 cites W2609825896 @default.
- W4311773326 cites W2779095112 @default.
- W4311773326 cites W2955613755 @default.
- W4311773326 cites W2967548057 @default.
- W4311773326 cites W2981720688 @default.
- W4311773326 cites W3004417816 @default.
- W4311773326 cites W3126307664 @default.
- W4311773326 cites W3156165270 @default.
- W4311773326 cites W4205343539 @default.
- W4311773326 doi "https://doi.org/10.1007/s42044-022-00128-3" @default.
- W4311773326 hasPublicationYear "2022" @default.
- W4311773326 type Work @default.
- W4311773326 citedByCount "0" @default.
- W4311773326 crossrefType "journal-article" @default.
- W4311773326 hasAuthorship W4311773326A5000667118 @default.
- W4311773326 hasAuthorship W4311773326A5029362649 @default.
- W4311773326 hasAuthorship W4311773326A5052885281 @default.
- W4311773326 hasAuthorship W4311773326A5073038523 @default.
- W4311773326 hasBestOaLocation W43117733262 @default.
- W4311773326 hasConcept C104317684 @default.
- W4311773326 hasConcept C116675565 @default.
- W4311773326 hasConcept C118518473 @default.
- W4311773326 hasConcept C119857082 @default.
- W4311773326 hasConcept C151406439 @default.
- W4311773326 hasConcept C159047783 @default.
- W4311773326 hasConcept C166957645 @default.
- W4311773326 hasConcept C205649164 @default.
- W4311773326 hasConcept C24338571 @default.
- W4311773326 hasConcept C2994590121 @default.
- W4311773326 hasConcept C41008148 @default.
- W4311773326 hasConcept C55493867 @default.
- W4311773326 hasConcept C86803240 @default.
- W4311773326 hasConceptScore W4311773326C104317684 @default.
- W4311773326 hasConceptScore W4311773326C116675565 @default.
- W4311773326 hasConceptScore W4311773326C118518473 @default.
- W4311773326 hasConceptScore W4311773326C119857082 @default.
- W4311773326 hasConceptScore W4311773326C151406439 @default.
- W4311773326 hasConceptScore W4311773326C159047783 @default.
- W4311773326 hasConceptScore W4311773326C166957645 @default.
- W4311773326 hasConceptScore W4311773326C205649164 @default.
- W4311773326 hasConceptScore W4311773326C24338571 @default.
- W4311773326 hasConceptScore W4311773326C2994590121 @default.
- W4311773326 hasConceptScore W4311773326C41008148 @default.
- W4311773326 hasConceptScore W4311773326C55493867 @default.
- W4311773326 hasConceptScore W4311773326C86803240 @default.
- W4311773326 hasIssue "2" @default.
- W4311773326 hasLocation W43117733261 @default.
- W4311773326 hasLocation W43117733262 @default.
- W4311773326 hasOpenAccess W4311773326 @default.
- W4311773326 hasPrimaryLocation W43117733261 @default.
- W4311773326 hasRelatedWork W181294014 @default.
- W4311773326 hasRelatedWork W2344759021 @default.
- W4311773326 hasRelatedWork W2748952813 @default.
- W4311773326 hasRelatedWork W2899084033 @default.
- W4311773326 hasRelatedWork W3030804050 @default.
- W4311773326 hasRelatedWork W3074234905 @default.
- W4311773326 hasRelatedWork W3175321409 @default.
- W4311773326 hasRelatedWork W4297997786 @default.
- W4311773326 hasRelatedWork W4304185171 @default.
- W4311773326 hasRelatedWork W4311773326 @default.
- W4311773326 hasVolume "6" @default.
- W4311773326 isParatext "false" @default.
- W4311773326 isRetracted "false" @default.
- W4311773326 workType "article" @default.