Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311773706> ?p ?o ?g. }
- W4311773706 endingPage "1802" @default.
- W4311773706 startingPage "1790" @default.
- W4311773706 abstract "In this study, artificial intelligence algorithms are proposed for estimating the compressive strength of hollow concrete block masonry prisms, including neural networks (ANN), combinatorial methods of group data handling (GMDH-Combi), and gene expression programming (GEP). To train and test the proposed models, 102 samples of hollow concrete prisms from previous research works were collected. The height-to-width ratio of hollow concrete prisms and the compressive strength of mortar and concrete blocks were considered as inputs. In order to evaluate the validity and predictability of the proposed models, they were compared with empirical models and models presented in codes and standards. Among the suggested and existing models, the ANN model with an R-value of 0.950 and MAPE error value of 6.921% had the best performance, which with a more complicated equation, can be used in the scientific aspect. In contrast, the other two proposed models (GMDH-Combi and GEP) with acceptable performance and accuracy levels and more simple closed-form equations can be utilized in practical aspects. Based on the parametric analysis, the proposed models were highly efficient and accurate. Moreover, the sensitivity analysis results showed that in all three proposed models of ANN, GMDH-Combi, and GEP, the compressive strength of concrete blocks was the most effective input parameter in the compressive strength estimation of hollow concrete prisms." @default.
- W4311773706 created "2022-12-28" @default.
- W4311773706 creator A5060773993 @default.
- W4311773706 creator A5060803392 @default.
- W4311773706 creator A5065259286 @default.
- W4311773706 creator A5071364642 @default.
- W4311773706 creator A5091246598 @default.
- W4311773706 date "2023-01-01" @default.
- W4311773706 modified "2023-10-14" @default.
- W4311773706 title "Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms" @default.
- W4311773706 cites W2006877043 @default.
- W4311773706 cites W2013488777 @default.
- W4311773706 cites W2020401624 @default.
- W4311773706 cites W2036730725 @default.
- W4311773706 cites W2054302559 @default.
- W4311773706 cites W2063014084 @default.
- W4311773706 cites W2064790011 @default.
- W4311773706 cites W2074924442 @default.
- W4311773706 cites W2076990781 @default.
- W4311773706 cites W2077523564 @default.
- W4311773706 cites W2078669451 @default.
- W4311773706 cites W2081802590 @default.
- W4311773706 cites W2083127770 @default.
- W4311773706 cites W2090235339 @default.
- W4311773706 cites W2093234546 @default.
- W4311773706 cites W2093603648 @default.
- W4311773706 cites W2113143593 @default.
- W4311773706 cites W2119185648 @default.
- W4311773706 cites W2169690625 @default.
- W4311773706 cites W2268358270 @default.
- W4311773706 cites W2515871802 @default.
- W4311773706 cites W2555426590 @default.
- W4311773706 cites W2917837763 @default.
- W4311773706 cites W2947380936 @default.
- W4311773706 cites W2981416566 @default.
- W4311773706 cites W3010523353 @default.
- W4311773706 cites W3033652307 @default.
- W4311773706 cites W3084379366 @default.
- W4311773706 cites W3093792209 @default.
- W4311773706 cites W3130078525 @default.
- W4311773706 cites W3161638567 @default.
- W4311773706 cites W3179310586 @default.
- W4311773706 cites W3197509462 @default.
- W4311773706 cites W4205529917 @default.
- W4311773706 cites W4206240537 @default.
- W4311773706 cites W4220775061 @default.
- W4311773706 cites W4221092976 @default.
- W4311773706 cites W4281394490 @default.
- W4311773706 cites W4281481684 @default.
- W4311773706 cites W4294042877 @default.
- W4311773706 cites W4303614048 @default.
- W4311773706 cites W4309475059 @default.
- W4311773706 doi "https://doi.org/10.1016/j.istruc.2022.12.007" @default.
- W4311773706 hasPublicationYear "2023" @default.
- W4311773706 type Work @default.
- W4311773706 citedByCount "13" @default.
- W4311773706 countsByYear W43117737062022 @default.
- W4311773706 countsByYear W43117737062023 @default.
- W4311773706 crossrefType "journal-article" @default.
- W4311773706 hasAuthorship W4311773706A5060773993 @default.
- W4311773706 hasAuthorship W4311773706A5060803392 @default.
- W4311773706 hasAuthorship W4311773706A5065259286 @default.
- W4311773706 hasAuthorship W4311773706A5071364642 @default.
- W4311773706 hasAuthorship W4311773706A5091246598 @default.
- W4311773706 hasConcept C105795698 @default.
- W4311773706 hasConcept C11413529 @default.
- W4311773706 hasConcept C117251300 @default.
- W4311773706 hasConcept C119857082 @default.
- W4311773706 hasConcept C127413603 @default.
- W4311773706 hasConcept C130767629 @default.
- W4311773706 hasConcept C159985019 @default.
- W4311773706 hasConcept C192562407 @default.
- W4311773706 hasConcept C197640229 @default.
- W4311773706 hasConcept C2524010 @default.
- W4311773706 hasConcept C2777210771 @default.
- W4311773706 hasConcept C30407753 @default.
- W4311773706 hasConcept C33923547 @default.
- W4311773706 hasConcept C41008148 @default.
- W4311773706 hasConcept C45804977 @default.
- W4311773706 hasConcept C50644808 @default.
- W4311773706 hasConcept C535899295 @default.
- W4311773706 hasConcept C66938386 @default.
- W4311773706 hasConcept C6980683 @default.
- W4311773706 hasConceptScore W4311773706C105795698 @default.
- W4311773706 hasConceptScore W4311773706C11413529 @default.
- W4311773706 hasConceptScore W4311773706C117251300 @default.
- W4311773706 hasConceptScore W4311773706C119857082 @default.
- W4311773706 hasConceptScore W4311773706C127413603 @default.
- W4311773706 hasConceptScore W4311773706C130767629 @default.
- W4311773706 hasConceptScore W4311773706C159985019 @default.
- W4311773706 hasConceptScore W4311773706C192562407 @default.
- W4311773706 hasConceptScore W4311773706C197640229 @default.
- W4311773706 hasConceptScore W4311773706C2524010 @default.
- W4311773706 hasConceptScore W4311773706C2777210771 @default.
- W4311773706 hasConceptScore W4311773706C30407753 @default.
- W4311773706 hasConceptScore W4311773706C33923547 @default.
- W4311773706 hasConceptScore W4311773706C41008148 @default.
- W4311773706 hasConceptScore W4311773706C45804977 @default.