Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311774893> ?p ?o ?g. }
- W4311774893 endingPage "126436" @default.
- W4311774893 startingPage "126436" @default.
- W4311774893 abstract "Over the years, several studies have investigated the stochastic phenomenon that generates wind energy. Many studies have focused on descriptive analyses to verify the most appropriate probabilistic distribution of this variable, while have examined the mathematical transformations in order to meet specific modelling requirements of well-known time series models. The wind variable is characterized by asymmetric behaviour and the usual time series models can result in poor predictive behaviour. This work presents a flexible class of time series models that account for asymmetry while being analytically and iteratively solved for inference and prediction, overcoming the need for mathematical transformations. The models are defined in the non-Gaussian state-space class, where asymmetric distributions are assumed for the phenomenon of interest. Therefore, several continuous probabilistic models were evaluated to model this variable, in addition to the more consolidated ones known as the Weibull and Gamma distributions. The results are promising for flexible long-term forecasts, generalizing the distributions consolidated in the literature on wind speed modelling." @default.
- W4311774893 created "2022-12-28" @default.
- W4311774893 creator A5004485520 @default.
- W4311774893 creator A5018703070 @default.
- W4311774893 creator A5067181248 @default.
- W4311774893 date "2023-03-01" @default.
- W4311774893 modified "2023-09-25" @default.
- W4311774893 title "An overview of non-Gaussian state-space models for wind speed data" @default.
- W4311774893 cites W1027286146 @default.
- W4311774893 cites W129305155 @default.
- W4311774893 cites W1974148806 @default.
- W4311774893 cites W1981182625 @default.
- W4311774893 cites W1991857164 @default.
- W4311774893 cites W2009307807 @default.
- W4311774893 cites W2025720061 @default.
- W4311774893 cites W2037991857 @default.
- W4311774893 cites W2054659065 @default.
- W4311774893 cites W2060552357 @default.
- W4311774893 cites W2064406852 @default.
- W4311774893 cites W2066481368 @default.
- W4311774893 cites W2070960910 @default.
- W4311774893 cites W2086284119 @default.
- W4311774893 cites W2100519178 @default.
- W4311774893 cites W2102173406 @default.
- W4311774893 cites W2102900229 @default.
- W4311774893 cites W2140750802 @default.
- W4311774893 cites W2157404564 @default.
- W4311774893 cites W2179877357 @default.
- W4311774893 cites W2280520967 @default.
- W4311774893 cites W2336076800 @default.
- W4311774893 cites W2343935107 @default.
- W4311774893 cites W2536939708 @default.
- W4311774893 cites W2778353854 @default.
- W4311774893 cites W2892346206 @default.
- W4311774893 cites W2899348142 @default.
- W4311774893 cites W2912518962 @default.
- W4311774893 cites W2965993285 @default.
- W4311774893 cites W2973158421 @default.
- W4311774893 cites W2977671807 @default.
- W4311774893 cites W2981208062 @default.
- W4311774893 cites W3011829128 @default.
- W4311774893 cites W3022982627 @default.
- W4311774893 cites W3023504555 @default.
- W4311774893 cites W3092155517 @default.
- W4311774893 cites W3117564914 @default.
- W4311774893 cites W3167683524 @default.
- W4311774893 cites W3185003435 @default.
- W4311774893 cites W3194280320 @default.
- W4311774893 cites W4212835178 @default.
- W4311774893 cites W4285498486 @default.
- W4311774893 cites W629046227 @default.
- W4311774893 cites W997099917 @default.
- W4311774893 doi "https://doi.org/10.1016/j.energy.2022.126436" @default.
- W4311774893 hasPublicationYear "2023" @default.
- W4311774893 type Work @default.
- W4311774893 citedByCount "1" @default.
- W4311774893 countsByYear W43117748932023 @default.
- W4311774893 crossrefType "journal-article" @default.
- W4311774893 hasAuthorship W4311774893A5004485520 @default.
- W4311774893 hasAuthorship W4311774893A5018703070 @default.
- W4311774893 hasAuthorship W4311774893A5067181248 @default.
- W4311774893 hasConcept C105795698 @default.
- W4311774893 hasConcept C121332964 @default.
- W4311774893 hasConcept C121864883 @default.
- W4311774893 hasConcept C127491075 @default.
- W4311774893 hasConcept C129537906 @default.
- W4311774893 hasConcept C134306372 @default.
- W4311774893 hasConcept C143724316 @default.
- W4311774893 hasConcept C151730666 @default.
- W4311774893 hasConcept C163716315 @default.
- W4311774893 hasConcept C173291955 @default.
- W4311774893 hasConcept C182365436 @default.
- W4311774893 hasConcept C28826006 @default.
- W4311774893 hasConcept C33923547 @default.
- W4311774893 hasConcept C41008148 @default.
- W4311774893 hasConcept C49937458 @default.
- W4311774893 hasConcept C62520636 @default.
- W4311774893 hasConcept C72434380 @default.
- W4311774893 hasConcept C86803240 @default.
- W4311774893 hasConcept C97355855 @default.
- W4311774893 hasConceptScore W4311774893C105795698 @default.
- W4311774893 hasConceptScore W4311774893C121332964 @default.
- W4311774893 hasConceptScore W4311774893C121864883 @default.
- W4311774893 hasConceptScore W4311774893C127491075 @default.
- W4311774893 hasConceptScore W4311774893C129537906 @default.
- W4311774893 hasConceptScore W4311774893C134306372 @default.
- W4311774893 hasConceptScore W4311774893C143724316 @default.
- W4311774893 hasConceptScore W4311774893C151730666 @default.
- W4311774893 hasConceptScore W4311774893C163716315 @default.
- W4311774893 hasConceptScore W4311774893C173291955 @default.
- W4311774893 hasConceptScore W4311774893C182365436 @default.
- W4311774893 hasConceptScore W4311774893C28826006 @default.
- W4311774893 hasConceptScore W4311774893C33923547 @default.
- W4311774893 hasConceptScore W4311774893C41008148 @default.
- W4311774893 hasConceptScore W4311774893C49937458 @default.
- W4311774893 hasConceptScore W4311774893C62520636 @default.
- W4311774893 hasConceptScore W4311774893C72434380 @default.
- W4311774893 hasConceptScore W4311774893C86803240 @default.