Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311777783> ?p ?o ?g. }
- W4311777783 abstract "Abstract Polarimetric data is nowadays used to build recognition models for the characterization of organic tissues or the early detection of some diseases. Different Mueller matrix‐derived polarimetric observables, which allow a physical interpretation of a specific characteristic of samples, are proposed in literature to feed the required recognition algorithms. However, they are obtained through mathematical transformations of the Mueller matrix and this process may loss relevant sample information in search of physical interpretation. In this work, we present a thorough comparative between 12 classification models based on different polarimetric datasets to find the ideal polarimetric framework to construct tissues classification models. The study is conducted on the experimental Mueller matrices images measured on different tissues: muscle, tendon, myotendinous junction and bone; from a collection of 165 ex‐vivo chicken thighs. Three polarimetric datasets are analyzed: (A) a selection of most representative metrics presented in literature; (B) Mueller matrix elements; and (C) the combination of (A) and (B) sets. Results highlight the importance of using raw Mueller matrix elements for the design of classification models." @default.
- W4311777783 created "2022-12-28" @default.
- W4311777783 creator A5020664748 @default.
- W4311777783 creator A5034835935 @default.
- W4311777783 creator A5043545630 @default.
- W4311777783 creator A5061864070 @default.
- W4311777783 creator A5080423174 @default.
- W4311777783 date "2022-12-23" @default.
- W4311777783 modified "2023-10-15" @default.
- W4311777783 title "Optimizing the classification of biological tissues using machine learning models based on polarized data" @default.
- W4311777783 cites W1524972756 @default.
- W4311777783 cites W1571903778 @default.
- W4311777783 cites W1623066622 @default.
- W4311777783 cites W1678356000 @default.
- W4311777783 cites W1969465601 @default.
- W4311777783 cites W1974363836 @default.
- W4311777783 cites W1976193075 @default.
- W4311777783 cites W1992888791 @default.
- W4311777783 cites W1993114526 @default.
- W4311777783 cites W2009131660 @default.
- W4311777783 cites W2013787809 @default.
- W4311777783 cites W2052481007 @default.
- W4311777783 cites W2076063813 @default.
- W4311777783 cites W2084561747 @default.
- W4311777783 cites W2124319519 @default.
- W4311777783 cites W2156665896 @default.
- W4311777783 cites W2165332166 @default.
- W4311777783 cites W2331262350 @default.
- W4311777783 cites W2499898469 @default.
- W4311777783 cites W2626891185 @default.
- W4311777783 cites W2760828558 @default.
- W4311777783 cites W2762733686 @default.
- W4311777783 cites W2894882086 @default.
- W4311777783 cites W2898562510 @default.
- W4311777783 cites W2913443057 @default.
- W4311777783 cites W2921500788 @default.
- W4311777783 cites W3010614034 @default.
- W4311777783 cites W3018757111 @default.
- W4311777783 cites W3025207535 @default.
- W4311777783 cites W3080265521 @default.
- W4311777783 cites W3087115066 @default.
- W4311777783 cites W3102476541 @default.
- W4311777783 cites W3130922751 @default.
- W4311777783 cites W3155785846 @default.
- W4311777783 cites W3164761670 @default.
- W4311777783 cites W3175089695 @default.
- W4311777783 cites W3177514516 @default.
- W4311777783 cites W3201635246 @default.
- W4311777783 cites W4206710140 @default.
- W4311777783 cites W4210789574 @default.
- W4311777783 cites W4211189396 @default.
- W4311777783 cites W4213134536 @default.
- W4311777783 cites W4221043105 @default.
- W4311777783 cites W4232444860 @default.
- W4311777783 cites W4240691888 @default.
- W4311777783 cites W4252066845 @default.
- W4311777783 cites W4283831380 @default.
- W4311777783 cites W4293561096 @default.
- W4311777783 cites W4299905753 @default.
- W4311777783 doi "https://doi.org/10.1002/jbio.202200308" @default.
- W4311777783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36519499" @default.
- W4311777783 hasPublicationYear "2022" @default.
- W4311777783 type Work @default.
- W4311777783 citedByCount "2" @default.
- W4311777783 countsByYear W43117777832023 @default.
- W4311777783 crossrefType "journal-article" @default.
- W4311777783 hasAuthorship W4311777783A5020664748 @default.
- W4311777783 hasAuthorship W4311777783A5034835935 @default.
- W4311777783 hasAuthorship W4311777783A5043545630 @default.
- W4311777783 hasAuthorship W4311777783A5061864070 @default.
- W4311777783 hasAuthorship W4311777783A5080423174 @default.
- W4311777783 hasBestOaLocation W43117777831 @default.
- W4311777783 hasConcept C106487976 @default.
- W4311777783 hasConcept C111919701 @default.
- W4311777783 hasConcept C119857082 @default.
- W4311777783 hasConcept C120665830 @default.
- W4311777783 hasConcept C121332964 @default.
- W4311777783 hasConcept C124101348 @default.
- W4311777783 hasConcept C153180895 @default.
- W4311777783 hasConcept C154945302 @default.
- W4311777783 hasConcept C159985019 @default.
- W4311777783 hasConcept C191486275 @default.
- W4311777783 hasConcept C192562407 @default.
- W4311777783 hasConcept C198531522 @default.
- W4311777783 hasConcept C199360897 @default.
- W4311777783 hasConcept C2780801425 @default.
- W4311777783 hasConcept C28493345 @default.
- W4311777783 hasConcept C36928386 @default.
- W4311777783 hasConcept C41008148 @default.
- W4311777783 hasConcept C97355855 @default.
- W4311777783 hasConcept C98045186 @default.
- W4311777783 hasConceptScore W4311777783C106487976 @default.
- W4311777783 hasConceptScore W4311777783C111919701 @default.
- W4311777783 hasConceptScore W4311777783C119857082 @default.
- W4311777783 hasConceptScore W4311777783C120665830 @default.
- W4311777783 hasConceptScore W4311777783C121332964 @default.
- W4311777783 hasConceptScore W4311777783C124101348 @default.
- W4311777783 hasConceptScore W4311777783C153180895 @default.
- W4311777783 hasConceptScore W4311777783C154945302 @default.
- W4311777783 hasConceptScore W4311777783C159985019 @default.