Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311778811> ?p ?o ?g. }
- W4311778811 endingPage "109918" @default.
- W4311778811 startingPage "109918" @default.
- W4311778811 abstract "Over the last three decades, computer vision has had a vital role in the healthcare sector by providing soft computing-based robust and intelligent diagnostic solutions. Glaucoma is a critical ophthalmic disease that can trigger irreversible loss of vision. The number of patients with glaucoma is increasing dramatically worldwide. Manual ophthalmic assessment of glaucoma detection is a tedious, error-prone, time-consuming, and subjective task. Therefore, computer-assisted automatic glaucoma diagnosis methods are required to strengthen existing diagnostic methods with their robust performance. Optic disc (OD) and optic cup (OC) segmentation have a key role in glaucoma detection. Accurate segmentation of the OD and OC provides valuable computational and clinical details that can substantially assist in the glaucoma screening process. Retinal fundus images have extensive variations in terms of size, shape, pixel intensity values, and background effects that make segmentation challenging. To mitigate these challenges, we developed two novel networks for accurate OD and OC segmentation. An efficient shallow segmentation network (ESS-Net) is the base network whereas a feature-blending-based shallow segmentation network (FBSS-Net) is the final network of this work. ESS-Net is a shallow architecture with a maximum-depth semantic preservation block for accurate segmentation, while FBSS-Net uses internal and external feature blending to improve overall segmentation performance. To confirm their effectiveness, we evaluated both networks using four publicly available datasets; REFUGE, Drions-DB, Drishti-GS, and Rim-One-r3. The proposed methods exhibited excellent segmentation performance, requiring a small number of trainable parameters (3.02 million parameters)." @default.
- W4311778811 created "2022-12-28" @default.
- W4311778811 creator A5014270399 @default.
- W4311778811 creator A5045807597 @default.
- W4311778811 creator A5050153883 @default.
- W4311778811 creator A5080344855 @default.
- W4311778811 creator A5083173630 @default.
- W4311778811 date "2023-01-01" @default.
- W4311778811 modified "2023-09-27" @default.
- W4311778811 title "Exploring deep feature-blending capabilities to assist glaucoma screening" @default.
- W4311778811 cites W1807964432 @default.
- W4311778811 cites W1901129140 @default.
- W4311778811 cites W1992086640 @default.
- W4311778811 cites W1997259062 @default.
- W4311778811 cites W2034786340 @default.
- W4311778811 cites W2054928682 @default.
- W4311778811 cites W2057266151 @default.
- W4311778811 cites W2069330237 @default.
- W4311778811 cites W2108824200 @default.
- W4311778811 cites W2139608738 @default.
- W4311778811 cites W2171096465 @default.
- W4311778811 cites W2205871084 @default.
- W4311778811 cites W2474489285 @default.
- W4311778811 cites W2513367050 @default.
- W4311778811 cites W2534129789 @default.
- W4311778811 cites W2607394097 @default.
- W4311778811 cites W2714469855 @default.
- W4311778811 cites W2755045970 @default.
- W4311778811 cites W2771079972 @default.
- W4311778811 cites W2792289763 @default.
- W4311778811 cites W2795078241 @default.
- W4311778811 cites W2810644003 @default.
- W4311778811 cites W2890602145 @default.
- W4311778811 cites W2895693960 @default.
- W4311778811 cites W2899728008 @default.
- W4311778811 cites W2912599891 @default.
- W4311778811 cites W2915496375 @default.
- W4311778811 cites W2922524275 @default.
- W4311778811 cites W2935464137 @default.
- W4311778811 cites W2946133851 @default.
- W4311778811 cites W2947102508 @default.
- W4311778811 cites W2962858109 @default.
- W4311778811 cites W2963163009 @default.
- W4311778811 cites W2964098128 @default.
- W4311778811 cites W2964309882 @default.
- W4311778811 cites W2979448322 @default.
- W4311778811 cites W2979824901 @default.
- W4311778811 cites W2980190282 @default.
- W4311778811 cites W2980199471 @default.
- W4311778811 cites W2982428510 @default.
- W4311778811 cites W3011178854 @default.
- W4311778811 cites W3011675330 @default.
- W4311778811 cites W3015198908 @default.
- W4311778811 cites W3019982033 @default.
- W4311778811 cites W3022140562 @default.
- W4311778811 cites W3024575974 @default.
- W4311778811 cites W3033274352 @default.
- W4311778811 cites W3033393628 @default.
- W4311778811 cites W3035974373 @default.
- W4311778811 cites W3042340386 @default.
- W4311778811 cites W3045215429 @default.
- W4311778811 cites W3046573722 @default.
- W4311778811 cites W3047326222 @default.
- W4311778811 cites W3080827299 @default.
- W4311778811 cites W3082424298 @default.
- W4311778811 cites W3087406761 @default.
- W4311778811 cites W3089025284 @default.
- W4311778811 cites W3092381736 @default.
- W4311778811 cites W3098547059 @default.
- W4311778811 cites W3105214773 @default.
- W4311778811 cites W3120123072 @default.
- W4311778811 cites W3122096920 @default.
- W4311778811 cites W3136424010 @default.
- W4311778811 cites W3139971937 @default.
- W4311778811 cites W3165420968 @default.
- W4311778811 cites W3171092390 @default.
- W4311778811 cites W3184320749 @default.
- W4311778811 cites W4200316488 @default.
- W4311778811 cites W4200438025 @default.
- W4311778811 cites W4205689467 @default.
- W4311778811 cites W4206143925 @default.
- W4311778811 cites W4282943709 @default.
- W4311778811 cites W4283521105 @default.
- W4311778811 cites W4285183316 @default.
- W4311778811 doi "https://doi.org/10.1016/j.asoc.2022.109918" @default.
- W4311778811 hasPublicationYear "2023" @default.
- W4311778811 type Work @default.
- W4311778811 citedByCount "2" @default.
- W4311778811 countsByYear W43117788112023 @default.
- W4311778811 crossrefType "journal-article" @default.
- W4311778811 hasAuthorship W4311778811A5014270399 @default.
- W4311778811 hasAuthorship W4311778811A5045807597 @default.
- W4311778811 hasAuthorship W4311778811A5050153883 @default.
- W4311778811 hasAuthorship W4311778811A5080344855 @default.
- W4311778811 hasAuthorship W4311778811A5083173630 @default.
- W4311778811 hasBestOaLocation W43117788111 @default.
- W4311778811 hasConcept C108583219 @default.
- W4311778811 hasConcept C118487528 @default.